Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 28(37): 52306-52318, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34003437

RESUMO

The use of recycled glass as a substrate for constructed wetlands was assessed through two studies. The first study examined the dissipation of atenolol, carbamazepine, and sulfamethoxazole in mesocosm-modeled wetlands using glass or limestone gravel as substrates, with or without cattails (Typha spp.). Following pseudo-first-order kinetics, atenolol dissipated the fastest from the water surface of the mesocosms (t1/2~1 day), followed by sulfamethoxazole (t1/2~14 days), and carbamazepine (t1/2~48 days), with no significant differences across treatments. Increased half-lives were observed at greater depth, likely due to light screening. A Monte Carlo sensitivity analysis diagnosed sunlight absorption rates and second-order hydroxyl-mediated indirect photolysis rates to be the main sources of uncertainty in our dissipation rate estimates, compared to our observed rates. The second study examined in situ pharmaceutical removal in tertiary pilot-scale subsurface filters made of crushed recycled glass or sand in a wastewater treatment facility in Manitoba, Canada. Glass and sand showed no significant differences for pharmaceutical removals; atenolol and metoprolol were removed below limits of detection, while carbamazepine and sulfamethoxazole persisted over a retention time of 24 h. Overall, recycled glass performed similarly to traditional substrates for wetland-based wastewater treatment.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...