Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Theor Popul Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019333

RESUMO

Multi-type birth-death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth-death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes-such as environmental carrying capacity or frequency-dependent selection-entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth-death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble's stochastically evolving interaction field converges to a deterministic trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth-death model.

2.
Blood Adv ; 2(13): 1572-1579, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980572

RESUMO

Telomere length (TL) in peripheral blood (PB) cells of patients with chronic myeloid leukemia (CML) has been shown to correlate with disease stage, prognostic scores, response to therapy, and disease progression. However, due to considerable genetic interindividual variability, TL varies substantially between individuals, limiting its use as a robust prognostic marker in individual patients. Here, we compared TL of BCR-ABL-, nonleukemic CD34+CD38- hematopoietic stem cells (HSC) in the bone marrow of CML patients at diagnosis to their individual BCR-ABL+ leukemic stem cell (LSC) counterparts. We observed significantly accelerated telomere shortening in LSC compared with nonleukemic HSC. Interestingly, the degree of LSC telomere shortening was found to correlate significantly with the leukemic clone size. To validate the diagnostic value of nonleukemic cells as internal controls and to rule out effects of tyrosine kinase inhibitor (TKI) treatment on these nontarget cells, we prospectively assessed TL in 134 PB samples collected in deep molecular remission after TKI treatment within the EURO-SKI study (NCT01596114). Here, no significant telomere shortening was observed in granulocytes compared with an age-adjusted control cohort. In conclusion, this study provides proof of principle for accelerated telomere shortening in LSC as opposed to HSC in CML patients at diagnosis. The fact that the degree of telomere shortening correlates with leukemic clone's size supports the use of TL in leukemic cells as a prognostic parameter pending prospective validation. TL in nonleukemic myeloid cells seems unaffected even by long-term TKI treatment arguing against a reduction of telomere-mediated replicative reserve in normal hematopoiesis under TKI treatment.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Homeostase do Telômero , Adulto , Idoso , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem
3.
J Math Biol ; 77(3): 795-820, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29675600

RESUMO

We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (random) structures inherent in this deterministic model. In a first step, we obtain a representation of the deterministic equation's solution (and, in particular, of its equilibria) in terms of an ancestral process called the killed ancestral selection graph. This representation allows one to understand the bifurcations related to the error threshold phenomenon from a genealogical point of view. Next, we characterise the ancestral type distribution by means of the pruned lookdown ancestral selection graph and study its properties at equilibrium. We also provide an alternative characterisation in terms of a piecewise-deterministic Markov process. Throughout, emphasis is on the underlying dualities as well as on explicit results.


Assuntos
Modelos Genéticos , Mutação , Seleção Genética , Animais , Genética Populacional/estatística & dados numéricos , Haploidia , Cadeias de Markov , Conceitos Matemáticos , Modelos Estatísticos , Processos Estocásticos
4.
Ann Hematol ; 96(9): 1457-1461, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28674830

RESUMO

Telomere shortening represents an established mechanism connecting aging and cancer development. We sequentially analyzed telomere length (TL) of 49 acute myeloid leukemia (AML) patients at diagnosis (n = 24), once they achieved complete cytological remission (CCR) and/or during refractory disease or relapse and after 1-year follow-up, with all patients having at least two sequential samples. TL was analyzed by monochrome multiplex quantitative polymerase chain reaction. We have observed substantially shortened TL in the cells of patients at diagnosis compared to age-adjusted controls. In patients reaching CCR after chemotherapy, telomere shortening was less pronounced than in persistence or relapse but still significantly shortened compared to controls. We estimate patients harboring approximately 20 years of premature telomere loss compared to healthy aged-matched subjects at the time of AML onset. Our data indicate a pre-existing telomere deficit in non-clonal hematopoiesis of AML patients providing a link between age and AML development.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Homeostase do Telômero/genética , Telômero , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Telômero/genética , Telômero/metabolismo
5.
Elife ; 42015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468615

RESUMO

We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas/fisiologia , Telômero , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Técnicas Citológicas , Granulócitos/citologia , Granulócitos/fisiologia , Voluntários Saudáveis , Humanos , Lactente , Recém-Nascido , Linfócitos/citologia , Linfócitos/fisiologia , Pessoa de Meia-Idade , Modelos Teóricos , Estudos Prospectivos , Adulto Jovem
6.
Blood ; 126(22): 2518-21, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26486788

RESUMO

Acute intestinal graft-versus-host disease (aGVHD) refractory to immunosuppressive treatment is a serious complication after allogenic hematopoietic stem cell transplantation (HSCT). The underlying mechanisms of refractory aGVHD of the gut are not fully understood. Although telomere length (TL) reflects the replicative history of a cell, critically short telomeres have been associated with replicative exhaustion and tissue failure. In this study, we demonstrate that enterocytes of patients with refractory intestinal aGVHD show significantly increased proliferation, which translates into significant and critical telomere attrition following HSCT as compared with unaffected patients undergoing HSCT. Calculated telomere loss in aGVHD patients is 190 bp/wk, thereby massively exceeding physiological steady-state TL shortening rates such as in lymphocytes (∼50 bp/y). Our data support the hypothesis that increased compensatory proliferation following continued tissue damage can result in massive telomere loss in enterocytes of aGVHD patients. The present study introduces aGVHD-triggered increased cellular turnover and telomere loss with subsequent replicative exhaustion as a mechanism for refractory gut GVHD that is compatible with the long-term clinical aspect of the disease and provides a basis for stem cell protective therapies in the treatment of aGVHD.


Assuntos
Proliferação de Células , Enterócitos/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas , Enteropatias/metabolismo , Encurtamento do Telômero , Doença Aguda , Aloenxertos , Enterócitos/patologia , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Enteropatias/patologia , Masculino , Estudos Retrospectivos
7.
Clin Epigenetics ; 7: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763115

RESUMO

BACKGROUND: Primary cells enter replicative senescence after a limited number of cell divisions. This process needs to be considered in cell culture experiments, and it is particularly important for regenerative medicine. Replicative senescence is associated with reproducible changes in DNA methylation (DNAm) at specific sites in the genome. The mechanism that drives senescence-associated DNAm changes remains unknown - it may involve stochastic DNAm drift due to imperfect maintenance of epigenetic marks or it is directly regulated at specific sites in the genome. RESULTS: In this study, we analyzed the reorganization of nuclear architecture and DNAm changes during long-term culture of human fibroblasts and mesenchymal stromal cells (MSCs). We demonstrate that telomeres shorten and shift towards the nuclear center at later passages. In addition, DNAm profiles, either analyzed by MethylCap-seq or by 450k IlluminaBeadChip technology, revealed consistent senescence-associated hypermethylation in regions associated with H3K27me3, H3K4me3, and H3K4me1 histone marks, whereas hypomethylation was associated with chromatin containing H3K9me3 and lamina-associated domains (LADs). DNA hypermethylation was significantly enriched in the vicinity of genes that are either up- or downregulated at later passages. Furthermore, specific transcription factor binding motifs (e.g. EGR1, TFAP2A, and ETS1) were significantly enriched in differentially methylated regions and in the promoters of differentially expressed genes. CONCLUSIONS: Senescence-associated DNA hypermethylation occurs at specific sites in the genome and reflects functional changes in the course of replicative senescence. These results indicate that tightly regulated epigenetic modifications during long-term culture contribute to changes in nuclear organization and gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...