Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2198, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069164

RESUMO

While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Dor Crônica , Semaforinas , Camundongos , Masculino , Humanos , Animais , Depressão/genética , Giro do Cíngulo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comorbidade , Semaforinas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32109506

RESUMO

Chronic pain produces psychologic distress, which often leads to mood disorders such as depression. Co-existing chronic pain and depression pose a serious socio-economic burden and result in disability affecting millions of individuals, which urges the development of treatment strategies targeting this comorbidity. Ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, is shown to be efficient in treating both pain and depression-related symptoms. However, the molecular characteristics of its role in chronic pain-induced depression remain largely unexplored. Hence, we studied the behavioral and molecular effects of a single systemic administration of ketamine (15 mg/kg, i.p.) on mechanical hypersensitivity and depressive-like consequences of chronic neuropathic pain. We showed that ketamine transiently alleviated mechanical hypersensitivity (lasting <24 h), while its antidepressant effect was observed even 72 h after administration. In addition, ketamine normalized the upregulated expression of the mitogen activated protein kinase (MAPK) phosphatase 1 (MKP-1) and the downregulated phosphorylation of extracellular signal-regulated kinase (pERK) in the anterior cingulate cortex (ACC) of mice displaying neuropathic pain-induced depressive-like behaviors. This effect of ketamine on the MKP-1 was first detected 30 min after the ketamine administration and persisted until up to 72 h. Altogether, these findings provide insight into the behavioral and molecular changes associated with single ketamine administration in the comorbidity of chronic pain and depression.


Assuntos
Antidepressivos/uso terapêutico , Dor Crônica/tratamento farmacológico , Depressão/tratamento farmacológico , Ketamina/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Dor Crônica/enzimologia , Depressão/enzimologia , Ketamina/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Fatores de Tempo
3.
Cell Tissue Res ; 377(1): 21-43, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30778732

RESUMO

The increasing number of individuals with comorbidities poses an urgent need to improve the management of patients with multiple co-existing diseases. Among these comorbidities, chronic pain and mood disorders, two long-lasting disabling conditions that significantly reduce the quality of life, could be cited first. The recent development of animal models accelerated the studies focusing on the underlying mechanisms of the chronic pain and depression/anxiety comorbidity. This review provides an overview of clinical and pre-clinical studies performed over the past two decades addressing the molecular aspects of the comorbid relationship of chronic pain and depression. We thus focused on the studies that investigated the molecular characteristics of the comorbid relationship between chronic pain and mood disorders, especially major depressive disorders, from the genetic and epigenetic point of view to key neuromodulators which have been shown to play an important role in this comorbidity.


Assuntos
Dor Crônica/epidemiologia , Dor Crônica/genética , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/epidemiologia , Transtornos de Ansiedade/genética , Monoaminas Biogênicas/farmacologia , Monoaminas Biogênicas/uso terapêutico , Dor Crônica/tratamento farmacológico , Comorbidade , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Epigênese Genética , Humanos , Camundongos , Qualidade de Vida , Ratos , Fatores de Transcrição/metabolismo
4.
Eur J Med Chem ; 147: 163-182, 2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29432948

RESUMO

4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1ß) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Guanidinas/farmacologia , Inflamação/tratamento farmacológico , Modelos Biológicos , Neuralgia/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Guanidinas/síntese química , Guanidinas/química , Humanos , Neuralgia/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
5.
Biol Psychiatry ; 82(5): 370-379, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359564

RESUMO

BACKGROUND: Depression is frequently associated with chronic pain or chronic stress. Among cortical areas, the anterior cingulate cortex (ACC, areas 24a and 24b) appears to be important for mood disorders and constitutes a neuroanatomical substrate for investigating the underlying molecular mechanisms. The current work aimed at identifying ACC molecular factors subserving depression. METHODS: Anxiodepressive-like behaviors in C57BL/6J male mice were induced by neuropathic pain, unpredictable chronic mild stress, and optogenetic ACC stimulation and were evaluated using novelty suppressed feeding, splash, and forced swim tests. ACC molecular changes in chronic pain-induced depression were uncovered through whole-genome expression analysis. Further mechanistic insights were provided by chromatin immunoprecipitation, Western blot, and immunostaining. The causal link between molecular changes and depression was studied using knockout, pharmacological antagonism, and local viral-mediated gene knockdown. RESULTS: Under chronic pain-induced depression, gene expression changes in the ACC highlighted the overexpression of a regulator of the mitogen-activated protein kinase pathway, mitogen-activated protein kinase phosphatase-1 (MKP-1). This upregulation is associated with the presence of transcriptionally active chromatin marks (acetylation) at its proximal promoter region as well as increased cyclic adenosine monophosphate response element-mediated transcriptional activity and phosphorylation of cyclic adenosine monophosphate response element binding protein and activating transcription factor. MKP-1 overexpression is also observed with unpredictable chronic mild stress and repeated ACC optogenetic stimulation and is reversed by fluoxetine. A knockout, an antagonist, or a local silencing of MKP-1 attenuates depressive-like behaviors, pointing to an important role of this phosphatase in depression. CONCLUSIONS: These data point to ACC MKP-1 as a key factor in the pathophysiology of depression and a potential target for treatment development.


Assuntos
Transtorno Depressivo/enzimologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Giro do Cíngulo/enzimologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Dor Crônica/enzimologia , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Fosfatase 1 de Especificidade Dupla/genética , Epigênese Genética , Fluoxetina/farmacologia , Expressão Gênica/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/enzimologia , Regulação para Cima/efeitos dos fármacos
6.
Cell Adh Migr ; 9(6): 417-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26632339

RESUMO

Growth cone guidance is driven by attractive and repulsive signaling cues. Until recently, repulsive signaling by semaphorins was thought to be mediated through Plexin receptors, whereas Slits-induced repulsion was solely mediated through Robo receptors. In a recent report published in Nature Neuroscience, Celine Delloye-Bourgeois and colleagues (2015) combined phenotypic analyses of transgenic mouse lines and in vitro biochemical experiments to identify PlexinA1 as a novel receptor for Slits. Strikingly, they uncovered for the very first time that the Slit2C-terminal fragment possesses some unique biological activity as binding partner for PlexinA1. Even more excitingly, the signaling cascade triggered by SlitC binding to PlexinA1 mediates growth cone collapse of commissural axons both in vivo and ex vivo and nicely complements Robo-Slit signaling in the developing spinal cord midline to prevent midline recrossing.


Assuntos
Axônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fragmentos de Peptídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...