Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1801: 148202, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521513

RESUMO

Obstructive sleep apnea is highly prevalent in Alzheimer's disease (AD). However, brainstem centers controlling respiration have received little attention in AD research, and mechanisms behind respiratory dysfunction in AD are not understood. The nucleus tractus solitarii (nTS) is an important brainstem center for respiratory control and chemoreflex function. Alterations of nTS integrity, like those shown in AD patients, likely affect neuronal processing and adequate control of breathing. We used the streptozotocin-induced rat model of AD (STZ-AD) to analyze cellular changes in the nTS that corroborate previously documented respiratory dysfunction. We used 2 common dosages of STZ (2 and 3 mg/kg STZ) for model induction and evaluated the early impact on cell populations in the nTS. The hippocampus served as control region to identify site-specific effects of STZ. There was significant atrophy in the caudal nTS of the 3 mg/kg STZ-AD group only, an area known to integrate chemoafferent information. Also, the hippocampus had significant atrophy with the highest STZ dosage tested. Both STZ-AD groups showed respiratory dysfunction along with multiple indices for astroglial and microglial activation. These changes were primarily located in the caudal and intermediate nTS. While there was no change of astrocytes in the hippocampus, microglial activation was accompanied by a reduction in synaptic density. Together, our data demonstrate that STZ-AD induces site-specific effects on all major cell types, primarily in the caudal/intermediate nTS. Both STZ dosages used in this study produced a similar outcome and can be used for future studies examining the initial symptoms of STZ-AD.


Assuntos
Doença de Alzheimer , Núcleo Solitário , Ratos , Animais , Núcleo Solitário/metabolismo , Estreptozocina/farmacologia , Gliose/induzido quimicamente , Gliose/metabolismo , Doença de Alzheimer/metabolismo , Respiração
2.
Exp Neurol ; 328: 113250, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32088169

RESUMO

The locus coeruleus (LC) is a pontine nucleus important for respiratory control and central chemoreception. It is affected in Alzheimer's disease (AD) and alteration of LC cell function may account for respiratory problems observed in AD patients. In the current study, we tested the electrophysiological properties and CO2/pH sensitivity of LC neurons in a model for AD. Sporadic AD was induced in rats by intracerebroventricular injection of 2 mg/kg streptozotocin (STZ), which induces behavioral and molecular impairments found in AD. LC neurons were recorded using the patch clamp technique and tested for responses to CO2 (10% CO2, pH = 7.0). The majority (~60%) of noradrenergic LC neurons in adult rats were inhibited by CO2 exposure as indicated by a significant decrease in action potential (AP) discharge to step depolarizations. The STZ-AD rat model had a greater sensitivity to CO2 than controls. The increased CO2-sensitivity was demonstrated by a significantly stronger inhibition of activity during hypercapnia that was in part due to hyperpolarization of the resting membrane potential. Reduction of AP discharge in both groups was generally accompanied by lower LC network activity, depolarized AP threshold, increased AP repolarization, and increased current through a subpopulation of voltage-gated K+ channels (KV). The latter was indicated by enhanced transient KV currents particularly in the STZ-AD group. Interestingly, steady-state KV currents were reduced under hypercapnia, a change that would favor enhanced AP discharge. However, the collective response of most LC neurons in adult rats, and particularly those in the STZ-AD group, was inhibited by CO2.


Assuntos
Doença de Alzheimer/fisiopatologia , Hipercapnia/fisiopatologia , Locus Cerúleo/fisiopatologia , Neurônios/fisiologia , Doença de Alzheimer/induzido quimicamente , Animais , Dióxido de Carbono/farmacologia , Modelos Animais de Doenças , Locus Cerúleo/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...