Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 244(3): 900-913, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39187924

RESUMO

The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Lactonas , Mutação , Brotos de Planta , Transdução de Sinais , Fosfatos Açúcares , Trealose , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/genética , Lactonas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos Açúcares/metabolismo , Mutação/genética , Trealose/análogos & derivados , Trealose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Pisum sativum/efeitos dos fármacos , Plantas Geneticamente Modificadas , Compostos Heterocíclicos com 3 Anéis
2.
Plant J ; 119(3): 1526-1542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858857

RESUMO

Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Lactonas , Reguladores de Crescimento de Plantas , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Transdução de Sinais
3.
Sci Data ; 10(1): 490, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500689

RESUMO

Basic leucine zipper 11 (bZIP11) is a transcription factor that is activated under low energy conditions in plants and plays a crucial role in enabling plants to adapt to starvation situations. Although previous results indicate that bZIP11 regulates chromatin accessibility based on evidence obtained from single genomic loci, to what extent this transcription factor regulates the chromatin landscape at the whole genome level remains unknown. Here we addressed this by performing an ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) on Arabidopsis thaliana (Arabidopsis) leaf protoplasts to obtain a profile of chromatin patterning in response upon bZIP11 induction. We identified, on average, 10,000 differentially accessible regions upon bZIP11 induction, corresponding to over 8,420 different genes out of the 25,000 genes present in the Arabidopsis genome. Our study provides a resource for understanding how bZIP11 regulates the genome at the chromatin level and provides an example of the impact of a single transcription factor on a whole plant genome.


Assuntos
Arabidopsis , Cromatina , Arabidopsis/genética , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Fatores de Transcrição/genética
4.
Nat Plants ; 7(11): 1443-1444, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764441
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA