Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(3): 787-799, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36322674

RESUMO

Bacterial attachment on root surfaces is an important step preceding the colonization or internalization and subsequent infection of plants by pathogens. Unfortunately, bacterial attachment is not well understood because the phenomenon is difficult to observe. Here we assessed whether this limitation could be overcome using optical trapping approaches. We have developed a system based on counter-propagating beams and studied its ability to guide Pectobacterium atrosepticum (Pba) cells to different root cell types within the interstices of transparent soils. Bacterial cells were successfully trapped and guided to root hair cells, epidermal cells, border cells, and tissues damaged by laser ablation. Finally, we used the system to quantify the bacterial cell detachment rate of Pba cells on root surfaces following reversible attachment. Optical trapping techniques could greatly enhance our ability to deterministically characterize mechanisms linked to attachment and formation of biofilms in the rhizosphere.


Assuntos
Raízes de Plantas , Solo , Raízes de Plantas/metabolismo , Pinças Ópticas , Bactérias , Plantas , Rizosfera , Microbiologia do Solo
2.
PLoS One ; 13(10): e0205711, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312341

RESUMO

Potato blackleg and soft rot caused by Pectobacterium and Dickeya species are among the most significant bacterial diseases affecting potato production globally. In this study we estimate the impact of future temperatures on establishment of non-indigenous but confirmed Pectobacterium and Dickeya species in Great Britain (GB). The calculations are based on probabilistic climate change data and a model fitted to disease severity data from a controlled environment tuber assay with the dominant potato blackleg and soft rot-causing species in GB (P. atrosepticum), and three of the main causative agents in Europe (P. carotovorum subsp. brasiliense, P. parmentieri, Dickeya solani). Our aim was to investigate if the European strains could become stronger competitors in the GB potato ecosystem as the climate warms, on the basis of their aggressiveness in tubers at different temperatures. Principally, we found that the tissue macerating capacity of all four pathogens will increase in GB under all emissions scenarios. The predominant Pectobacterium and Dickeya species in Europe are able to cause disease in tubers under field conditions currently seen in GB but are not expected to become widely established in the future, at least on the basis of their aggressiveness in tubers relative to P. atrosepticum under GB conditions. Our key take-home messages are that the GB potato industry is well positioned to continue to thrive via current best management practices and continued reinforcement of existing legislation.


Assuntos
Mudança Climática , Enterobacteriaceae , Pectobacterium , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Enterobacteriaceae/crescimento & desenvolvimento , Pectobacterium/crescimento & desenvolvimento , Doenças das Plantas/etiologia , Temperatura , Reino Unido
3.
Methods Mol Biol ; 1302: 1-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981242

RESUMO

Blackleg and soft rot of potato, caused by Pectobacterium and Dickeya spp., are major production constraints in many potato-growing regions of the world. Despite advances in our understanding of the causative organisms, disease epidemiology, and control, blackleg remains the principal cause of down-grading and rejection of potato seed in classification schemes across Northern Europe and many other parts of the world. Although symptom recognition is relatively straightforward and is applied universally in seed classification schemes, attributing disease to a specific organism is problematic and can only be achieved through the use of diagnostics. Similarly as disease spread is largely through the movement of asymptomatically infected seed tubers and, possibly in the case of Dickeya spp., irrigation waters, accurate and sensitive diagnostics are a prerequisite for detection. This chapter describes the diagnostic pathway that can be applied to identify the principal potato pathogens within the genera Pectobacterium and Dickeya.


Assuntos
DNA Bacteriano/análise , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Pectobacterium/genética , Pectobacterium/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Solanum tuberosum/microbiologia , DNA Bacteriano/genética , Enterobacteriaceae/patogenicidade , Pectobacterium/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Tubérculos/química , Tubérculos/microbiologia , Especificidade da Espécie
4.
FEMS Microbiol Ecol ; 54(1): 123-30, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329978

RESUMO

We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.


Assuntos
Controle Biológico de Vetores , Coifa/fisiologia , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Zea mays/microbiologia , Contagem de Colônia Microbiana , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Sementes/microbiologia
5.
FEMS Microbiol Lett ; 210(2): 215-9, 2002 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-12044677

RESUMO

The effects of volatile secondary metabolites produced by Trichoderma pseudokoningii, Trichoderma viride and Trichoderma aureoviride on growth rate and protein synthesis in two Serpula lacrymans isolates were investigated. Mycelial growth was affected to differing degrees, depending on the specific interactive microbial couplet involved. Protein synthesis by both S. lacrymans (Forfar) and S. lacrymans (H28) was affected by the volatile secondary metabolites of T. aureoviride and T. viride, but not by those of T. pseudokoningii. Mycelial growth and the original pattern of protein synthesis resumed when the antagonists were removed. It is probable that volatile secondary metabolites have played an important role during the evolution of microorganisms in the context of community, population and functional dynamics.


Assuntos
Basidiomycota/efeitos dos fármacos , Proteínas Fúngicas/biossíntese , Gases/metabolismo , Gases/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Trichoderma/metabolismo , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Evolução Biológica , Ecossistema , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...