Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(9): 5176-5186, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30939000

RESUMO

Organosulfur compounds are important components of secondary organic aerosols (SOA). While the Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) has been extensively used in aerosol studies, the response of the AMS to organosulfur compounds is not well-understood. Here, we investigated the fragmentation patterns of organosulfurs and inorganic sulfates in the AMS, developed a method to deconvolve total sulfate into components of inorganic and organic origins, and applied this method in both laboratory and field measurements. Apportionment results from laboratory isoprene photooxidation experiment showed that with inorganic sulfate seed, sulfate functionality of organic origins can contribute ∼7% of SOA mass at peak growth. Results from measurements in the Southeastern U.S. showed that 4% of measured sulfate is from organosulfur compounds. Methanesulfonic acid was estimated for measurements in the coastal and remote marine boundary layer. We explored the application of this method to unit mass-resolution data, where it performed less well due to interferences. Our apportionment results demonstrate that organosulfur compounds could be a non-negligible source of sulfate fragments in AMS laboratory and field data sets. A reevaluation of previous AMS measurements over the full range of atmospheric conditions using this method could provide a global estimate/constraint on the contribution of organosulfur compounds.


Assuntos
Poluentes Atmosféricos , Sulfatos , Aerossóis , Espectrometria de Massas , Sudeste dos Estados Unidos , Compostos de Enxofre
2.
Environ Sci Technol ; 50(8): 4259-68, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26967467

RESUMO

Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere.


Assuntos
Aerossóis/química , Sulfatos/química , Poluentes Atmosféricos/química , Atmosfera/química , Umidade , Modelos Teóricos , Cloreto de Sódio/química , Termodinâmica , Água/química , Molhabilidade
3.
J Am Chem Soc ; 130(52): 17858-66, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19053445

RESUMO

The cyclization of 2-(hydroxypropyl)-4-nitrophenyl phosphate (HpPNP) catalyzed by the dinuclear zinc complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (1) proceeds by a transition state that is different from that of the uncatalyzed reaction. Kinetic isotope effects (KIEs) measured in the nucleophilic atom and in the leaving group show that the uncatalyzed cyclization has a transition state (TS) with little phosphorus-oxygen bond fission to the leaving group ((18)k(lg) = 1.0064 +/- 0.0009 and (15)k = 1.0002 +/- 0.0002) and that nucleophilic bond formation occurs in the rate-determining step ((18)k(nuc) = 1.0326 +/- 0.0008). In the catalyzed reaction, larger leaving group isotope effects ((18)k(lg) = 1.0113 +/- 0.0005 and (15)k = 1.0015 +/- 0.0005) and a smaller nucleophile isotope effect ((18)k(nuc) = 1.0116 +/- 0.0010) indicate a later TS with greater leaving group bond fission and greater nucleophilic bond formation. These observed nucleophile KIEs are the combined effect of the equilibrium effect on deprotonation of the 2'-hydroxyl nucleophile and the KIE on the nucleophilic step. An EIE of 1.0245 for deprotonation of the hydroxyl group of HPpNP was obtained computationally. The different KIEs for the two reactions indicate that the effective catalysis by 1 is accompanied by selection for an altered transition state, presumably arising from the preferential stabilization by the catalyst of charge away from the nucleophile and toward the leaving group. These results demonstrate the potential for a catalyst using biologically relevant metal ions to select for an altered transition state for phosphoryl transfer.


Assuntos
Compostos Organofosforados/química , RNA/química , Zinco/química , Catálise , Cátions Bivalentes , Ciclização , Cinética , Isótopos de Nitrogênio , Nitrofenóis/química , Organofosfatos , Uridina/análogos & derivados
4.
J Am Chem Soc ; 126(38): 11864-9, 2004 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-15382921

RESUMO

Kinetic isotope effects in the nucleophile and leaving group were obtained for the reaction of p-nitrophenyl phosphate monoester coordinated to a dinuclear Co(III) complex. The metal complex of the p-nitrophenyl phosphate monoester was found to hydrolyze by a single-step concerted mechanism, with significant nucleophilic participation in the transition state. By contrast, the hydrolysis of uncomplexed p-nitrophenyl phosphate occurs by a very loose transition state with little bond formation to the nucleophile. Previously, the metal complex of the diester methyl-p-nitrophenyl phosphate was found to hydrolyze via a two-step addition-elimination mechanism, in contrast to the concerted hydrolysis mechanism followed by uncomplexed diesters with the p-nitrophenolate leaving group. These results show that coordination to a metal complex can significantly alter the mechanism of phosphoryl transfer.


Assuntos
Cobalto/química , Nitrofenóis/química , Organofosfatos/química , Compostos Organofosforados/química , Hidrólise , Cinética , Compostos Organometálicos/química , Isótopos de Oxigênio , Termodinâmica
5.
J Am Chem Soc ; 124(50): 14860-1, 2002 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-12475323

RESUMO

Isotope effects in the nucleophile and in the leaving group were measured to gain information about the mechanism and transition state of the hydrolysis of methyl p-nitrophenyl phosphate complexed to a dinuclear cobalt complex. The complexed diester undergoes hydrolysis about 1011 times faster than the corresponding uncomplexed diester. The kinetic isotope effects indicate that this rate acceleration is accompanied by a change in mechanism. A large inverse 18O isotope effect in the bridging hydroxide nucleophile (0.937 +/- 0.002) suggests that nucleophilic attack occurs before the rate-determining step. Large isotope effects in the nitrophenyl leaving group (18Olg = 1.029 +/- 0.002, 15N = 1.0026 +/- 0.0002) indicate significant fission of the P-O ester bond in the transition state of the rate-determining step. The data indicate that in contrast to uncomplexed diesters, which undergo hydrolysis by a concerted mechanism, the reaction of the complexed diester likely proceeds via an addition-elimination mechanism. The rate-limiting step is expulsion of the p-nitrophenyl leaving group from the intermediate, which proceeds by a late transition state with extensive bond fission to the leaving group. This represents a substantial change in mechanism from the hydrolysis of uncomplexed aryl phosphate diesters.


Assuntos
Cobalto/química , Compostos Organometálicos/química , Organofosfatos/química , Hidrólise , Cinética , Isótopos de Nitrogênio , Nitrofenóis/química , Compostos Organofosforados/química , Isótopos de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...