Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865434

RESUMO

Determining space use for species is fundamental to understanding their ecology, and tracking animals can reveal insights into their spatial ecology on home ranges and territories. Recent technological advances have led to GPS-tracking devices light enough for birds as small as ~30 g, creating novel opportunities to remotely monitor fine-scale movements and space use for these smaller species. We tested whether miniaturized GPS tags can allow us to understand space use of migratory birds away from their capture sites and sought to understand both pre-breeding space use as well as territory and habitat use on the breeding grounds. We used GPS tags to characterize home ranges on the breeding grounds for a migratory songbird with limited available breeding information, the Golden-crowned Sparrow (Zonotrichia atricapilla). Using GPS points from 23 individuals across 26 tags (three birds tagged twice), we found home ranges in Alaska and British Columbia were on average 44.1 ha (95% kernel density estimate). In addition, estimates of territory sizes based on field observations (mean 2.1 ha, 95% minimum convex polygon [MCP]) were three times smaller than 95% MCPs created using GPS tags (mean 6.5 ha). Home ranges included a variety of land cover classes, with shrubland particularly dominant (64-100% of home range cover for all but one bird). Three birds tracked twice returned to the same breeding area each year, supporting high breeding site fidelity for this species. We found reverse spring migration for five birds that flew up to 154 km past breeding destinations before returning. GPS-tracking technology allowed for critical ecological insights into this migratory species that breeds in very remote locations.


Assuntos
Migração Animal , Sistemas de Informação Geográfica , Comportamento de Retorno ao Território Vital , Estações do Ano , Pardais , Animais , Migração Animal/fisiologia , Pardais/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Cruzamento , Ecossistema , Colúmbia Britânica , Alaska , Comportamento de Nidação/fisiologia
2.
Mov Ecol ; 11(1): 2, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639697

RESUMO

BACKGROUND: Migrating passerines in North America have shown sharp declines. Understanding habitat selection and threats along migration paths are critical research needs, but details about migrations have been limited due to the difficulty of tracking small birds. Recent technological advances of tiny GPS-tags provide new opportunities to delineate fine-scale movements in small passerines during a life stage that has previously been inherently difficult to study. METHODS: We investigated habitat selection along migration routes for a temperate-zone migratory passerine, the Golden-crowned Sparrow (Zonotrichia atricapilla), given GPS tags on California wintering grounds. We used a resource selection function combined with conditional logistic regression to compare matched sets of known stopover locations and available but unused locations to determine how land cover class, vegetation greenness and climate variables influence habitat selection during migration. We also provide general migration descriptions for this understudied species including migration distance, duration, and elevation, and repeated use of stopover areas. RESULTS: We acquired 22 tracks across 19 individuals, with a total of 541 valid spring and fall migration locations. Birds traveled to breeding grounds in Alaska and British Columbia along coastal routes, selecting for shrubland and higher vegetation greenness in both migration seasons as well as grasslands during fall migration. However, model interactions showed they selected sites with lower levels of greenness when in forest (both seasons) and shrubland (fall only), which may reflect their preference for more open habitats or represent a trade-off in selection between habitat type and productivity. Birds also selected for locations with higher daily maximum temperature during spring migration. Routes during spring migration were lower in elevation on average, shorter in duration, and had fewer long stopovers than in fall migration. For two birds, we found repeated use of the same stopover areas in spring and fall migration. CONCLUSIONS: Using miniaturized GPS, this study provides new insight into habitat selection along migration routes for a common temperate-zone migrating songbird, contributing to a better understanding of full annual cycle models, and informing conservation efforts. Golden-crowned Sparrows selected for specific habitats along migration routes, and we found previously unknown behaviors such as repeated use of the same stopover areas by individuals across different migratory seasons.

3.
Ecol Evol ; 12(6): e8934, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784033

RESUMO

The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS-tagging data, climate data, remote-sensed vegetation data, and bird-banding data to better understand the dynamics of black-headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992-2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age-specific capture data and climate covariates, and survival rates informed by adult capture-mark-recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long-term population trend. We found only weak support for most climate-demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species.

4.
Sci Rep ; 10(1): 5483, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218483

RESUMO

We compared the vulnerability of a Nearctic-Neotropical migrant (Swainson's Thrush, Catharus ustulatus) for three geographically-defined breeding populations in California by linking breeding and wintering regions, estimating migration distances, and quantifying relative forest loss. Using data from light-level geolocator and GPS tags, we found that breeding birds from the relatively robust coastal population in the San Francisco Bay area wintered predominantly in western Mexico (n = 18), whereas the far rarer breeding birds from two inland populations that occur near one another in the Sierra Nevada and southern Cascades mountain ranges migrated to farther wintering destinations, with birds from the Lassen region (n = 5) predominantly going to Central America and birds from the Tahoe region (n = 7) predominantly to South America. Landscape-level relative forest loss was greater in the breeding and wintering regions of the two Cascade-Sierra populations than those of coastal birds. Longer migration distances and greater exposure to recent forest loss suggest greater current vulnerability of Cascade-Sierra birds. Our results demonstrate that for some species, quantifying migration distances and destinations across relatively small distances among breeding populations (in this case, 140-250 km apart) can identify dramatically different vulnerabilities that need to be considered in conservation planning.


Assuntos
Migração Animal/fisiologia , Aves Canoras/fisiologia , Animais , Regiões Árticas , Cruzamento , California , Mudança Climática , Conservação dos Recursos Naturais , Feminino , Florestas , Sistemas de Informação Geográfica , Masculino , Estações do Ano , Clima Tropical
5.
PLoS One ; 7(4): e34886, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22506055

RESUMO

The migratory biology and connectivity of passerines remains poorly known, even for those that move primarily within the temperate zone. We used light-level geolocators to describe the migratory geography of a North American temperate migrant passerine. From February to March of 2010, we attached geolocator tags to 33 Golden-crowned Sparrows (Zonotrichia atricapilla) wintering on the central coast of California, USA, and recovered four tags the following winter (October to December 2010). We used a bayesian state-space model to estimate the most likely breeding locations. All four birds spent the breeding season on the coast of the Gulf of Alaska. These locations spanned approximately 1200 kilometers, and none of the individuals bred in the same location. Speed of migration was nearly twice as fast during spring than fall. The return rate of birds tagged the previous season (33%) was similar to that of control birds (39%), but comparing return rates was complicated because 7 of 11 returning birds had lost their tags. For birds that we recaptured before spring migration, we found no significant difference in mass change between tagged and control birds. Our results provide insight into the previously-unknown breeding provenance of a wintering population of Golden-crowned Sparrows and provide more evidence of the contributions that light-level geolocation can make to our understanding of the migratory geography of small passerines.


Assuntos
Migração Animal/fisiologia , Reprodução/fisiologia , Pardais/fisiologia , Animais , Teorema de Bayes , Índice de Massa Corporal , Meio Ambiente , Geografia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...