Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocr Soc ; 7(6): bvad057, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200849

RESUMO

Context: Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective: The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods: We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results: PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with ß-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion: Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the ß-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.

2.
Mol Metab ; 47: 101174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549847

RESUMO

OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.


Assuntos
Apetite/fisiologia , Homeostase , Hipotálamo/metabolismo , Esterol Esterase/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Metabolismo Energético , Feminino , Hiperfagia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Fatores de Processamento de RNA , Esterol Esterase/genética , Estresse Fisiológico/genética , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 115(43): E10255-E10264, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301804

RESUMO

Biased signaling has been suggested as a means of selectively modulating a limited fraction of the signaling pathways for G-protein-coupled receptor family members. Hence, biased ligands may allow modulation of only the desired physiological functions and not elicit undesired effects associated with pharmacological treatments. The ghrelin receptor is a highly sought antiobesity target, since the gut hormone ghrelin in humans has been shown to increase both food intake and fat accumulation. However, it also modulates mood, behavior, growth hormone secretion, and gastric motility. Thus, blocking all pathways of this receptor may give rise to potential side effects. In the present study, we describe a highly promiscuous signaling capacity for the ghrelin receptor. We tested selected ligands for their ability to regulate the various pathways engaged by the receptor. Among those, a biased ligand, YIL781, was found to activate the Gαq/11 and Gα12 pathways selectively without affecting the engagement of ß-arrestin or other G proteins. YIL781 was further characterized for its in vivo physiological functions. In combination with the use of mice in which Gαq/11 was selectively deleted in the appetite-regulating AgRP neurons, this biased ligand allowed us to demonstrate that selective blockade of Gαq/11, without antagonism at ß-arrestin or other G-protein coupling is sufficient to decrease food intake.


Assuntos
Grelina/metabolismo , Receptores de Grelina/metabolismo , Animais , Ingestão de Alimentos/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-26578081

RESUMO

BACKGROUND: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has not previously been addressed directly. METHODS: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim, and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor overexpression on anxiety-related behavior before and after acute stress and measured the modulation of serotonin receptor expression. RESULTS: We found that ghrelin caused an anxiolytic-like effect in both the open field and elevated plus maze tests. Additionally, it attenuated air-puff-induced stress in the social environment, while the opposite was shown in ghrelin receptor deficient mice. Finally, we found that overexpression of the ghrelin receptor in the basolateral division of the amygdala caused an anxiolytic-like effect and decreased the 5HT1a receptor expression. CONCLUSIONS: Ghrelin administration and overexpression of the ghrelin receptor in the amygdala induces anxiolytic-like behavior. Since the ghrelin receptor has high constitutive activity, ligand-independent signaling in vivo may be important for the observed anxiolytic-like effects. The anxiolytic effects seem to be mediated independently from the HPA axis, potentially engaging the central serotonin system.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Ansiolíticos/farmacologia , Ansiedade/prevenção & controle , Comportamento Animal/efeitos dos fármacos , Grelina/farmacologia , Receptores de Grelina/agonistas , Transdução de Sinais/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/psicologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Elevação dos Membros Posteriores , Humanos , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Comportamento Social , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Natação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...