Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 1(10): 1585, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29185503

RESUMO

In Fig. 5 of the version of this Article originally published, the final number on the x axes of each panel was incorrectly written as 1.5; it should have read 7.5. This has now been corrected in all versions of the Article.

2.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985561

RESUMO

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Marchantia/genética , Adaptação Biológica , Embriófitas/fisiologia , Regulação da Expressão Gênica de Plantas , Marchantia/fisiologia , Anotação de Sequência Molecular , Transdução de Sinais , Transcrição Gênica
3.
Nat Ecol Evol ; 1(5): 119, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28812690

RESUMO

Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...