Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287714

RESUMO

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Assuntos
COVID-19 , Vacinas Virais , Ratos , Camundongos , Humanos , Animais , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Amplamente Neutralizantes , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Ratos Sprague-Dawley , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Vacinas de Subunidades Antigênicas/genética , Camundongos Endogâmicos BALB C , Macaca mulatta , Anticorpos Antivirais
2.
Alzheimers Dement (N Y) ; 3(2): 262-272, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29067332

RESUMO

INTRODUCTION: A novel amyloid ß (Aß) synthetic peptide vaccine (UB-311) has been evaluated in a first-in-human trial with patients of mild-to-moderate Alzheimer's disease. We describe translational research covering vaccine design, preclinical characterization, and phase-I clinical trial with supportive outcome that advances UB-311 into an ongoing phase-II trial. METHODS: UB-311 is constructed with two synthetic Aß1-14-targeting peptides (B-cell epitope), each linked to different helper T-cell peptide epitopes (UBITh®) and formulated in a Th2-biased delivery system. The hAPP751 transgenic mouse model was used to perform the proof-of-concept study. Baboons and macaques were used for preclinical safety, tolerability, and immunogenicity evaluation. Patients with mild-to-moderate Alzheimer's disease (AD) were immunized by intramuscular route with 3 doses of UB-311 at weeks 0, 4, and 12, and monitored until week 48. Safety and immunogenicity were assessed per protocol, and preliminary efficacy was analyzed by Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Mini-Mental State Examination (MMSE), and Alzheimer's Disease Cooperative Study-Clinician's Global Impression of Change (ADCS-CGIC). RESULTS: UB-311 covers a diverse genetic background and facilitates strong immune response with high responder rate. UB-311 reduced the levels of Aß1-42 oligomers, protofibrils, and plaque load in hAPP751 transgenic mice. Safe and well-tolerated UB-311 generated considerable site-specific (Aß1-10) antibodies across all animal species examined. In AD patients, UB-311 induced a 100% responder rate; injection site swelling and agitation were the most common adverse events (4/19 each). A slower rate of increase in ADAS-Cog from baseline to week 48 was observed in the subgroup of mild AD patients (MMSE ≥ 20) compared with the moderate AD subgroup, suggesting that UB-311 may have a potential of cognition improvement in patients with early stage of Alzheimer's dementia. DISCUSSION: The UBITh® platform can generate a high-precision molecular vaccine with high responder rate, strong on-target immunogenicity, and a potential of cognition improvement, which support UB-311 for active immunotherapy in early-to-mild AD patients currently enrolled in a phase-II trial (NCT02551809).

3.
Vaccine ; 25(16): 3041-52, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17287052

RESUMO

The UBITh AD immunotherapeutic vaccine for Alzheimer's disease uses an amyloid-beta (Abeta) immunogen having two designer peptides that have been engineered to elicit anti-N terminal Abeta(1-14) antibodies while minimizing potential for the generation of adverse anti-Abeta immune responses. The vaccine has been further designed for minimization of inflammatory reactivities through the use of a proprietary vaccine delivery system that biases Th2 type regulatory T cell responses in preference to Th1 pro-inflammatory T cell responses. In vitro studies and in vivo studies in small animals, baboons and macaques show that anti-Abeta antibodies are generated with the expected N-terminus site-specificity, and that these antibodies have functional immunogenicities to neutralize the toxic activity of Abeta and promote clearance of plaque deposition. The antibodies appear to draw Abeta from the CNS into peripheral circulation. Results indicate that the UBITh AD vaccine did not evoke anti-Abeta cellular responses in a transgenic mouse model for AD. The vaccine was safe and well tolerated in adult Cynomolgus macaques during a repeat dose acute and chronic toxicity study.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/administração & dosagem , Especificidade de Anticorpos , Fragmentos de Peptídeos/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Animais , Formação de Anticorpos , Encéfalo/patologia , Modelos Animais de Doenças , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática , Cobaias , Imunoterapia , Macaca , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Vacinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...