Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 30(22): 40315-40327, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298966

RESUMO

By precisely managing fiber-optic nonlinearity with anomalous dispersion, we have demonstrated the control of generating plural few-optical-cycle pulses based on a 24-MHz Chromium:forsterite laser, allowing multicolor two-photon tissue imaging by wavelength mixing. The formation of high-order soliton and its efficient coupling to dispersive wave generation leads to phase-matched spectral broadening, and we have obtained a broadband continuum ranging from 830 nm to 1200 nm, delivering 5-nJ pulses with a pulse width of 10.5 fs using a piece of large-mode-area fiber. We locate the spectral enhancement at around 920 nm for the two-photon excitation of green fluorophores, and we can easily compress the resulting pulse close to its limited duration without the need for active pulse shaping. To optimize the wavelength mixing for sum-frequency excitation, we have realized the management of the power ratio and group delay between the soliton and dispersive wave by varying the initial pulse energy without additional delay control. We have thus demonstrated simultaneous three-color two-photon tissue imaging with contrast management between different signals. Our source optimization leads to efficient two-photon excitation reaching a 500-µm imaging depth under a low 14-mW illumination power. We believe our source development leads to an efficient and compact approach for driving multicolor two-photon fluorescence microscopy and other ultrafast investigations, such as strong-field-driven applications.


Assuntos
Cromo , Fótons , Análise de Falha de Equipamento , Desenho de Equipamento , Microscopia de Fluorescência
2.
Biomed Opt Express ; 12(5): 2888-2901, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168906

RESUMO

We have demonstrated widely tunable Yb:fiber-based laser sources, aiming to replace Ti:sapphire lasers for the nJ-level ultrafast applications, especially for the uses of nonlinear light microscopy. We investigated the influence of different input parameters to obtain an expansive spectral broadening, enabled by self-phase modulation and further reshaped by self-steepening, in the normal dispersion regime before the fiber damage. We also discussed the compressibility and intensity fluctuations of the demonstrated pulses, to reach the transform-limited duration with a very low intensity noise. Most importantly, we have demonstrated clear two-photon fluorescence images from UV-absorbing fluorophores to deep red dye stains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...