Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 38(7): 4021-4026, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29970526

RESUMO

AIM: The study aimed to investigate the role of two polymorphisms of methylenetetrahydrofolate reductase (MTHFR), C677T and A1298C, in the risk of potentially malignant oral disorders (PMODs). MATERIALS AND METHODS: Genotypes of the MTHFR C677T and A1298C polymorphisms were determined using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) for 224 PMOD cases and 485 age-matched controls. RESULTS: The C677T T allele-carrying genotypes were significantly associated with a decreased risk of PMODs [odds ratio (OR)=0.62, 95% confidence interval (CI)=0.44-0.86]. Haplotype analysis also indicated that the 677T/1298A haplotype was associated with a decreased risk of PMODs (OR=0.56, 95%CI=0.40-0.80). No significant interaction was observed between MTHFR polymorphisms and lifestyle factors. CONCLUSION: Our findings suggest that the T-allele-carrying MTHFR C677T genotype or haplotype may reduce the risk of PMODs. However, these observations require further confirmation using larger samples.


Assuntos
Predisposição Genética para Doença , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Neoplasias Bucais/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Estudos de Casos e Controles , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
2.
Nanoscale Res Lett ; 9(1): 603, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25404873

RESUMO

This work demonstrates a feasible single poly-Si gate-all-around (GAA) junctionless fin field-effect transistor (JL-FinFET) for use in one-time programming (OTP) nonvolatile memory (NVM) applications. The advantages of this device include the simplicity of its use and the ease with which it can be embedded in Si wafer, glass, and flexible substrates. This device exhibits excellent retention, with a memory window maintained 2 V after 10(4) s. By extrapolation, 95% of the original charge can be stored for 10 years. In the future, this device will be applied to multi-layer Si ICs in fully functional systems on panels, active-matrix liquid-crystal displays, and three-dimensional (3D) stacked flash memory.

3.
Nanoscale Res Lett ; 8(1): 331, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23875863

RESUMO

This study proposed the twin poly-Si fin field-effect transistor (FinFET) nonvolatile memory with a structure that is composed of Ω-gate nanowires (NWs). Experimental results show that the NW device has superior memory characteristics because its Ω-gate structure provides a large memory window and high program/erase efficiency. With respect to endurance and retention, the memory window can be maintained at 3.5 V after 104 program and erase cycles, and after 10 years, the charge is 47.7% of its initial value. This investigation explores its feasibility in the future active matrix liquid crystal display system-on-panel and three-dimensional stacked flash memory applications.

4.
J Nanosci Nanotechnol ; 11(12): 10419-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408918

RESUMO

This study investigates the characteristics of the planar twin poly-Si thin film transistor (TFT) EEPROM that utilizes a nitride (Si3N4) charge trapping layer. A comparison is made of two devices with different gate dielectrics, one a 16 nm-thick oxide (SiO2) layer for O-structure and the other 5 nm/10 nm-thick oxide/nitride layers for O/N-structure. Incorporating a nitride charge trapping layer and reducing the tunneling oxide thickness enable the O/N-structure EEPROM to enhance the program/erase (P/E) efficiency. Additionally, EEPROM formed with the tri-gate nanowires (NWs) structure can further enhance P/E efficiency and a large memory window because of its high electric field across the tunneling oxide. Reliability results indicated that, since the nitride layer contains discrete traps, the memory window can be maintained 2.2 V after 10(4) P/E cycles. For retention, the memory window can be maintained 1.9 V, and 30% charge loss for ten years of data storage. This investigation indicates that its possibility in future system-on-panel (SOP) of thin-film transistor liquid crystal display (TFTLCD) and 3-D stacked high-density Flash memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...