Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22491, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795346

RESUMO

Arm movement kinematics may provide a more sensitive way to assess neurorehabilitation outcomes than existing metrics. However, measuring arm kinematics in people with stroke can be challenging for traditional optical tracking systems due to non-ideal environments, expense, and difficulty performing required calibration. Here, we present two open-source methods, one using inertial measurement units (IMUs) and another using virtual reality (Vive) sensors, for accurate measurements of wrist position with respect to the shoulder during reaching movements in people with stroke. We assessed the accuracy of each method during a 3D reaching task. We also demonstrated each method's ability to track two metrics derived from kinematics-sweep area and smoothness-in people with chronic stroke. We computed correlation coefficients between the kinematics estimated by each method when appropriate. Compared to a traditional optical tracking system, both methods accurately tracked the wrist during reaching, with mean signed errors of 0.09 ± 1.81 cm and 0.48 ± 1.58 cm for the IMUs and Vive, respectively. Furthermore, both methods' estimated kinematics were highly correlated with each other (p < 0.01). By using relatively inexpensive wearable sensors, these methods may be useful for developing kinematic metrics to evaluate stroke rehabilitation outcomes in both laboratory and clinical environments.


Assuntos
Acidente Vascular Cerebral/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Articulação do Punho/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Engenharia Biomédica/métodos , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Reprodutibilidade dos Testes , Reabilitação do Acidente Vascular Cerebral , Punho
2.
Ann Clin Transl Neurol ; 8(9): 1895-1905, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34415114

RESUMO

BACKGROUND: High-intensity occupational therapy can improve arm function after stroke, but many people lack access to such therapy. Home-based therapies could address this need, but they don't typically address abnormal muscle co-activation, an important aspect of arm impairment. An earlier study using lab-based, myoelectric computer interface game training enabled chronic stroke survivors to reduce abnormal co-activation and improve arm function. Here, we assess feasibility of doing this training at home using a novel, wearable, myoelectric interface for neurorehabilitation training (MINT) paradigm. OBJECTIVE: Assess tolerability and feasibility of home-based, high-dose MINT therapy in severely impaired chronic stroke survivors. METHODS: Twenty-three participants were instructed to train with the MINT and game for 90 min/day, 36 days over 6 weeks. We assessed feasibility using amount of time trained and game performance. We assessed tolerability (enjoyment and effort) using a customized version of the Intrinsic Motivation Inventory at the conclusion of training. RESULTS: Participants displayed high adherence to near-daily therapy at home (mean of 82 min/day of training; 96% trained at least 60 min/day) and enjoyed the therapy. Training performance improved and co-activation decreased with training. Although a substantial number of participants stopped training, most dropouts were due to reasons unrelated to the training paradigm itself. INTERPRETATION: Home-based therapy with MINT is feasible and tolerable in severely impaired stroke survivors. This affordable, enjoyable, and mobile health paradigm has potential to improve recovery from stroke in a variety of settings. Clinicaltrials.gov: NCT03401762.


Assuntos
Jogos Eletrônicos de Movimento , Avaliação de Processos e Resultados em Cuidados de Saúde , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Doença Crônica , Eletromiografia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Sobreviventes
3.
Lab Chip ; 18(10): 1461-1470, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29664086

RESUMO

Sepsis, an adverse auto-immune response to an infection often causing life-threatening complications, results in the highest mortality and treatment cost of any illness in US hospitals. Several immune biomarker levels, including Interleukin 6 (IL-6), have shown a high correlation to the onset and progression of sepsis. Currently, no technology diagnoses and stratifies sepsis progression using biomarker levels. This paper reports a microfluidic biochip platform to detect proteins in undiluted human plasma samples. The device uses a differential enumeration platform that integrates Coulter counting principles, antigen specific capture chambers, and micro size bead based immunodetection to quantify cytokines. This microfluidic biochip was validated as a potential point of care technology by quantifying IL-6 from plasma samples (n = 29) with good correlation (R2 = 0.81) and agreement (Bland-Altman) compared to controls. In combination with previous applications, this point of care platform can potentially detect cell and protein biomarkers simultaneously for sepsis stratification.


Assuntos
Proteínas Sanguíneas/análise , Imunoensaio/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Biomarcadores/sangue , Humanos , Interleucina-6/sangue , Limite de Detecção , Técnicas Analíticas Microfluídicas/métodos , Sepse/sangue , Sepse/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...