Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109866, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38840839

RESUMO

Methods for detecting proteins in small extracellular vesicles (sEVs) lack sensitivity and quantitative accuracy, missing clues about health and disease. Our study introduces the Nano-Extracellular Omics Sensing (NEXOS) platform, merging electrical (E-NEXOS) and optical detection (O-NEXOS). E-NEXOS determines the concentration of target sEV sub-types, and O-NEXOS quantifies the concentration of target protein epitopes (TEPs) on those TEVs. In this work, both technologies were compared to several sEV detection tools, showing superior detection limits for CD9+CD81+ and CD9+HER2+ sEVs. Furthermore, the additional information on TEVs and TEPs from bulk sEV samples, provided new phenotyping capabilities. We determined the average number of CD81 and HER2 proteins on CD9+ sEVs, a number which was later validated on spiked human plasma. These results highlight the compatibility of NEXOS with complex biofluids and, as importantly, hint at its many potential applications, ranging from basic research to the anticipated clinical translation of sEVs.

2.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010300

RESUMO

Intracellular vesicles (IVs) are formed through endocytosis of vesicles into cytoplasm. IV formation is involved in activating various signal pathways through permeabilization of IV membranes and the formation of endosomes and lysosomes. A method named chromophore-assisted laser inactivation (CALI) is applied to study the formation of IVs and the materials in controlling IV regulation. CALI is an imaging-based photodynamic methodology to study the signaling pathway induced by membrane permeabilization. The method allows spatiotemporal manipulation of the selected organelle to be permeabilized in a cell. The CALI method has been applied to observe and monitor specific molecules through the permeabilization of endosomes and lysosomes. The membrane rupture of IVs is known to selectively recruit glycan-binding proteins, such as galectin-3. Here, the protocol describes the induction of IV rupture by AlPcS2a and the use of galectin-3 as a marker to label impaired lysosomes, which is useful in studying the downstream effects of IV membrane rupture and their downstream effects under various situations.


Assuntos
Endossomos , Galectina 3 , Galectina 3/metabolismo , Endossomos/metabolismo , Endocitose/fisiologia , Lisossomos/metabolismo , Transdução de Sinais , Membranas Intracelulares/metabolismo
3.
Glycobiology ; 32(9): 760-777, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35789267

RESUMO

Galectin-3 (GAL3) is a ß-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.


Assuntos
Infecções por HIV , HIV-1 , Proteínas Sanguíneas , Linfócitos T CD4-Positivos/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Humanos , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química
4.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553041

RESUMO

Galectins are ß-galactoside-binding animal lectins primarily found in the cytosol, while their carbohydrate ligands are mainly distributed in the extracellular space. Cytosolic galectins are anticipated to accumulate on damaged endocytic vesicles through binding to glycans initially displayed on the cell surface and subsequently located in the lumen of the vesicles, and this can be followed by cellular responses. To facilitate elucidation of the mechanism underlying this process, we adopted a model system involving induction of endocytic vesicle damage with light that targets the endocytosed amphiphilic photosensitizer disulfonated aluminum phthalocyanine. We demonstrate that the levels of galectins around damaged endosomes are dependent on the composition of carbohydrates recognized by the proteins. By super resolution imaging, galectin-3 and galectin-8 aggregates were found to be distributed in distinct microcompartments. Importantly, galectin accumulation is significantly affected when cell surface glycans are altered. Furthermore, accumulated galectins can direct autophagy adaptor proteins toward damaged endocytic vesicles, which are also significantly affected following alteration of cell surface glycans. We conclude that cytosolic galectins control cellular responses reflect dynamic modifications of cell surface glycans.


Assuntos
Carboidratos/química , Galectinas/metabolismo , Células A549 , Animais , Células CHO , Comunicação Celular , Células Cultivadas , Cricetulus , Endossomos/metabolismo , Galectinas/química , Humanos
5.
Nat Commun ; 4: 2111, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23817530

RESUMO

Lysosomes are the major degradative compartments within cells, harbouring a wide variety of hydrolytic enzymes within their lumen. Release of lysosomal hydrolases from lysosomes into the cell cytoplasm results in cell death. Here we report that damaged lysosomes undergo autophagic turnover. Using a light-induced lysosome impairing scheme that can be controlled spatially and temporally within a cell, we show that damaged lysosomes are selectively ubiquitinated, recruit autophagic proteins and are eventually incorporated into autolysosomes for degradation. We propose that autophagic removal of lysosomes, which we term lysophagy, is a surveillance mechanism that alleviates cells from the adverse effects of lysosomal damage. We envision our method to induce lysosomal damage will enable detailed molecular studies of the lysophagy pathway in the future.


Assuntos
Autofagia , Lisossomos/metabolismo , Análise Espaço-Temporal , Autofagia/efeitos da radiação , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Indóis/metabolismo , Lisossomos/efeitos da radiação , Compostos Organometálicos/metabolismo , Coloração e Rotulagem , Ubiquitina/metabolismo , Ubiquitinação/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...