Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(1): 384-393, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063839

RESUMO

While nanoalloys are of paramount scientific and practical interest, the main processes leading to their formation are still poorly understood. Key structural features in the alloy systems, including the crystal phase, chemical ordering, and morphology, are challenging to control at the nanoscale, making it difficult to extend their use to industrial applications. In this contribution, we focus on the gold/silver system that has two of the most prevalent noble metals and combine experiments with simulations to uncover the formation mechanisms at the atomic level. Nanoparticles were produced using a state-of-the-art inert-gas aggregation source and analyzed using transmission electron microscopy and energy-dispersive X-ray spectroscopy. Machine-learning-assisted molecular dynamics simulations were employed to model the crystallization process from liquid droplets to nanocrystals. Our study finds a preponderance of nanoparticles with five-fold symmetric morphology, including icosahedra and decahedra which is consistent with previous results on mono-metallic nanoparticles. However, we observed that gold atoms, rather than silver atoms, segregate at the surface of the obtained nanoparticles for all the considered alloy compositions. These segregation tendencies are in contrast to previous studies and have consequences on the crystallization dynamics and the subsequent crystal ordering. We finally showed that the underpinning of this surprising segregation dynamics is due to charge transfer and electrostatic interactions rather than surface energy considerations.

2.
Nanoscale ; 15(16): 7438-7449, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37013461

RESUMO

We present the experimental realization of plasmonic hyperdoped Si nanocrystals embedded in silica via a combination of sequential low energy ion implantation and rapid thermal annealing. We show that phosphorus dopants are incorporated into the nanocrystal cores at concentrations up to six times higher than P solid solubility in bulk Si by combining 3D mapping with atom probe tomography and analytical transmission electron microscopy. We shed light on the origin of nanocrystal growth at high P doses, which we attribute to Si recoiling atoms generated in the matrix by P implantation, which likely increase Si diffusivity and feed the Si nanocrystals. We show that dopant activation enables partial nanocrystal surface passivation that can be completed by forming gas annealing. Such surface passivation is a critical step in the formation of plasmon resonance, especially for small nanocrystals. We find that the activation rate in these small doped Si nanocrystals is the same as in bulk Si under the same doping conditions.

3.
Nanotechnology ; 33(46)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35914514

RESUMO

In this study, we demonstrate the effect of change of the sputtering power and the deposition pressure on the ignition and the combustion properties of Al/CuO reactive thin films. A reduced sputtering power of Al along with the deposition carried out at a higher-pressure result in a high-quality thin film showing a 200% improvement in the burn rate and a 50% drop in the ignition energy. This highlights the direct implication of the change of the process parameters on the responsivity and the reactivity of the reactive film while maintaining the Al and CuO thin-film integrity both crystallographically and chemically. Atomically resolved structural and chemical analyzes enabled us to qualitatively determine how the microstructural differences at the interface (thickness, stress level, delamination at high temperatures and intermixing) facilitate the Al and O migrations and impact the overall nano-thermite reactivity. We found that the deposition of CuO under low pressure produces well-defined and similar Al-CuO and CuO-Al interfaces with the least expected intermixing. Our investigations also showed that the magnitude of residual stress induced during the deposition plays a decisive role in influencing the overall nano-thermite reactivity. Higher is the magnitude of the tensile residual stress induced, stronger is the presence of gaseous oxygen at the interface. By contrast, high compressive interfacial stress aids in preserving the Al atoms for the main reaction while not getting expended in the interface thickening. Overall, this analysis helped in understanding the effect of change of deposition conditions on the reactivity of Al/CuO nanolaminates and several handles that may be pulled to optimize the process better by means of physical engineering of the interfaces.

4.
ACS Nano ; 14(2): 1399-1405, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31825584

RESUMO

The magnetic configurations of cylindrical Co-rich CoNi nanowires have been quantitatively analyzed at the nanoscale by electron holography and correlated to local structural and chemical properties. The nanowires display grains of both face-centered cubic (fcc) and hexagonal close packed (hcp) crystal structures, with grain boundaries parallel to the nanowire axis direction. Electron holography evidences the existence of a complex exotic magnetic configuration characterized by two distinctly different types of magnetic configurations within a single nanowire: an array of periodical vortices separating small transverse domains in hcp-rich regions with perpendicular easy axis orientation and a mostly axial configuration parallel to the nanowire axis in regions with fcc grains. These vastly different domains are found to be caused by local variations in the chemical composition modifying the crystalline orientation and/or structure, which give rise to change in magnetic anisotropies. Micromagnetic simulations, including the structural properties that have been experimentally determined, allow for a deeper understanding of the complex magnetic states observed by electron holography.

5.
Chemistry ; 21(48): 17437-44, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26471723

RESUMO

The confinement of air-protected metallic magnetic nanoparticles in the inner cavity of carbon nanotubes (CNTs) should offer an interesting perspective for biomedical applications or for controlling CNT alignment in composites. Because the direct confinement of polymer-precoated nanoparticles in CNTs could be restricted by diffusion limitations, we developed a process based on: 1) the confinement of iron nanoparticles surface-modified with an iron polymerization catalyst in the cavity of CNTs and 2) the polymerization of isoprene on the confined nanoparticles. The resulting material consists in CNT-confined iron nanoparticles coated with a polyisoprene air barrier. This approach constitutes a proof of concept for the development of smart materials for use in medicine or composites.


Assuntos
Butadienos/química , Hemiterpenos/química , Ferro/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Pentanos/química , Catálise , Magnetismo , Polimerização
6.
ACS Nano ; 9(3): 2792-804, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25734760

RESUMO

Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized core-shell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.

7.
Nanoscale Res Lett ; 9(1): 123, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24636335

RESUMO

We have grown GaAsBi quantum wells by molecular beam epitaxy. We have studied the properties of a 7% Bi GaAsBi quantum well and their variation with thermal annealing. High-resolution X-ray diffraction, secondary ion mass spectrometry, and transmission electron microscopy have been employed to get some insight into its structural properties. Stationary and time-resolved photoluminescence shows that the quantum well emission, peaking at 1.23 µm at room temperature, can be improved by a rapid annealing at 650°C, while the use of a higher annealing temperature leads to emission degradation and blue-shifting due to the activation of non-radiative centers and bismuth diffusion from the quantum well.

8.
Chemistry ; 18(29): 9075-82, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22674810

RESUMO

In the last ten years, the study and the search for new multiferroic materials have been a major challenge due to their potential applications in electronic technology. In this way, bismuth-containing perovskites (BiMO(3)), and particularly those in which the metal M position is occupied by a magnetically active cation, have been extensively investigated as possible multiferroic materials. From the point of view of synthesis, only a few of the possible bismuth-containing perovskites can be prepared by conventional methods but at high pressures. Herein, the preparation of one of these potential multiferroic systems, the solid solution xBiMnO(3)-(1-x)PbTiO(3) by mechanosynthesis is reported. Note that this synthetic method allows the oxides with high x values, and more particularly the BiMnO(3) phase, to be obtained as nanocrystalline phases, in a single step and at room temperature without the application of external pressure. These results confirm that, in the case of Bi perovskites, mechanosynthesis is a good alternative to high-pressure synthesis. These materials have been studied from the point of view of their structural characteristics by precession electron diffraction and magnetic property measurements.

9.
Small ; 3(11): 1906-11, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17935067

RESUMO

The relaxor-type behavior, electrical polarization buildup, and switching in 0.92Pb(Zn(1/3)Nb(2/3))O(3)-0.08PbTiO(3) nanostructured ceramics with a grain size of approximately 20 nm is reported for the first time. This composition presents the highest-known piezoelectric coefficients, yet phase stability is an issue. Ceramics can only be obtained by the combination of mechanosynthesis and spark-plasma sintering. The results raise the possibility of using nanoscale, perovskite-relaxor-based morphotropic-phase-boundary materials for sensing and actuation in nanoelectromechanical systems.


Assuntos
Cerâmica/química , Cristalização/métodos , Chumbo/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Titânio/química , Impedância Elétrica , Substâncias Macromoleculares/química , Magnetismo , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...