Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38915722

RESUMO

The mammalian cortex is comprised of cells with different morphological, physiological, and molecular properties that can be classified according to shared properties into cell types. Defining the contribution of each cell type to the computational and cognitive processes that are guided by the cortex is essential for understanding its function in health and disease. We use transcriptomic and epigenomic cortical cell type taxonomies from mice and humans to define marker genes and enhancers, and to build genetic tools for cortical cell types. Here, we present a large toolkit for selective targeting of cortical populations, including mouse transgenic lines and recombinant adeno-associated virus (AAV) vectors containing genomic enhancers. We report evaluation of fifteen new transgenic driver lines and over 680 different enhancer AAVs covering all major subclasses of cortical cells, with many achieving a high degree of specificity, comparable with existing transgenic lines. We find that the transgenic lines based on marker genes can provide exceptional specificity and completeness of cell type labeling, but frequently require generation of a triple-transgenic cross for best usability/specificity. On the other hand, enhancer AAVs are easy to screen and use, and can be easily modified to express diverse cargo, such as recombinases. However, their use depends on many factors, such as viral titer and route of administration. The tools reported here as well as the scaled process of tool creation provide an unprecedented resource that should enable diverse experimental strategies towards understanding mammalian cortex and brain function.

2.
Neuron ; 112(3): 488-499.e5, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38086374

RESUMO

Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.


Assuntos
Dopamina , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia , Neurônios Dopaminérgicos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Sci Adv ; 9(32): eadg8869, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566654

RESUMO

Dopamine is broadly implicated in reinforcement learning, but how patterns of dopamine activity are generated is poorly resolved. Here, we demonstrate that two ion channels, Kv4.3 and BKCa1.1, regulate the pattern of dopamine neuron firing and dopamine release on different time scales to influence separate phases of reinforced behavior in mice. Inactivation of Kv4.3 in VTA dopamine neurons increases ex vivo pacemaker activity and excitability that is associated with increased in vivo firing rate and ramping dynamics before lever press in a learned instrumental paradigm. Loss of Kv4.3 enhances performance of the learned response and facilitates extinction. In contrast, loss of BKCa1.1 increases burst firing and phasic dopamine release that enhances learning of an instrumental response and enhances extinction burst lever pressing in early extinction that is associated with a greater change in activity between reinforced and unreinforced actions. These data demonstrate that disruption of intrinsic regulators of neuronal activity differentially affects dopamine dynamics during reinforcement and extinction learning.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Camundongos , Animais , Reforço Psicológico , Aprendizagem , Canais Iônicos
4.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398115

RESUMO

Dysregulation of the dopamine (DA) system is a hallmark of substance abuse disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors. One such region is the bed nucleus of the stria terminalis (BNST), which has been linked to the development and maintenance of AUD. Recently, we identified alcohol withdrawal-related neuroadaptations in the periaqueductal gray/dorsal raphe to BNST DA circuit in male mice. However, the role of D2R-expressing BNST neurons in voluntary alcohol consumption is not well characterized. In this study, we used a CRISPR-Cas9-based viral approach, to selectively reduce the expression of D2Rs in BNST VGAT neurons and interrogated the impact of BNST D2Rs in alcohol-related behaviors. In male mice, reduced D2R expression potentiated the stimulatory effects of alcohol and increased voluntary consumption of 20% w/v alcohol in a two-bottle choice intermittent access paradigm. This effect was not specific to alcohol, as D2R deletion also increased sucrose intake in male mice. Interestingly, cell-specific deletion of BNST D2Rs in female mice did not alter alcohol-related behaviors but lowered the threshold for mechanical pain sensitivity. Collectively, our findings suggest a role for postsynaptic BNST D2Rs in the modulation of sex-specific behavioral responses to alcohol and sucrose.

5.
Elife ; 122023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039453

RESUMO

Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide. A polymorphism in FAAH (FAAH C385A) reduces FAAH expression, increases anandamide levels, and increases the risk of obesity. Nevertheless, some studies have found no association between FAAH C385A and obesity. We investigated whether the environmental context governs the impact of FAAH C385A on metabolic outcomes. Using a C385A knock-in mouse model, we found that FAAH A/A mice are more susceptible to glucocorticoid-induced hyperphagia, weight gain, and activation of hypothalamic AMP-activated protein kinase (AMPK). AMPK inhibition occluded the amplified hyperphagic response to glucocorticoids in FAAH A/A mice. FAAH knockdown exclusively in agouti-related protein (AgRP) neurons mimicked the exaggerated feeding response of FAAH A/A mice to glucocorticoids. FAAH A/A mice likewise presented exaggerated orexigenic responses to ghrelin, while FAAH knockdown in AgRP neurons blunted leptin anorectic responses. Together, the FAAH A/A genotype amplifies orexigenic responses and decreases anorexigenic responses, providing a putative mechanism explaining the diverging human findings.


Assuntos
Proteínas Quinases Ativadas por AMP , Endocanabinoides , Camundongos , Humanos , Animais , Proteína Relacionada com Agouti , Endocanabinoides/metabolismo , Amidoidrolases/metabolismo , Obesidade
6.
Elife ; 122023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927614

RESUMO

The axonal guidance cue netrin-1 serves a critical role in neural circuit development by promoting growth cone motility, axonal branching, and synaptogenesis. Within the adult mouse brain, expression of the gene encoding (Ntn1) is highly enriched in the ventral midbrain where it is expressed in both GABAergic and dopaminergic neurons, but its function in these cell types in the adult system remains largely unknown. To address this, we performed viral-mediated, cell-type specific CRISPR-Cas9 mutagenesis of Ntn1 in the ventral tegmental area (VTA) of adult mice. Ntn1 loss-of-function in either cell type resulted in a significant reduction in excitatory postsynaptic connectivity. In dopamine neurons, the reduced excitatory tone had a minimal phenotypic behavioral outcome; however, reduced glutamatergic tone on VTA GABA neurons induced behaviors associated with a hyperdopaminergic phenotype. Simultaneous loss of Ntn1 function in both cell types largely rescued the phenotype observed in the GABA-only mutagenesis. These findings demonstrate an important role for Ntn1 in maintaining excitatory connectivity in the adult midbrain and that a balance in this connectivity within two of the major cell types of the VTA is critical for the proper functioning of the mesolimbic system.


Assuntos
Ácido Glutâmico , Área Tegmentar Ventral , Camundongos , Animais , Ácido Glutâmico/metabolismo , Área Tegmentar Ventral/fisiologia , Netrina-1/metabolismo , Transdução de Sinais , Neurônios Dopaminérgicos/fisiologia
7.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36712060

RESUMO

Neurons produce and release neuropeptides to communicate with one another. Despite their profound impact on critical brain functions, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects the neuropeptides release presynaptically, and a genetically encoded silencer that specifically degrades neuropeptides inside the LDCV. Monitoring and silencing peptidergic and glutamatergic transmissions from presynaptic terminals using our newly developed tools and existing genetic tools, respectively, reveal that neuropeptides, not glutamate, are the primary transmitter in encoding unconditioned stimulus during Pavlovian threat learning. These results show that our sensor and silencer for peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake behaving animals.

8.
Mol Metab ; 66: 101645, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442744

RESUMO

OBJECTIVE: Proopiomelanocortin (POMC) neurons are the key anorexigenic hypothalamic neuron for integrating metabolic cues to generate the appropriate output for maintaining energy homeostasis and express the requisite channels as a perfect synaptic integrator in this role. Similar to the metabolic hormones leptin and insulin, glutamate also excites POMC neurons via group I metabotropic glutamate receptors (mGluR1 and 5, mGluR1/5) that activate Transient Receptor Potential Canonical (TRPC 5) Channels to cause depolarization. A key modulator of TRPC 5 channel activity is stromal interaction molecule 1 (STIM1), which is involved in recruitment of TRPC 5 channels from receptor-operated to store-operated calcium entry following depletion of calcium from the endoplasmic reticulum. METHODS: We used a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas) and a single guide RNA (sgRNA) to mutate Stim1 in POMCCre neurons in male mice, verified by qPCR of Stim1 mRNA expression in single POMC neurons. Whole-cell patch clamp experiments were conducted to validate the effects of Stim1 mutagenesis. Body weight and food intake were measured in male mice to assess disruptions in energy balance. RESULTS: Reduced Stim1 expression augmented the efficacy of the mGluR1/5 agonist 3, 5-Dihydroxyphenylglycine (DHPG) to depolarize POMC neurons via a Gαq-coupled signaling pathway, which is an essential part of excitatory glutamatergic input in regulating energy homeostasis. The TRPC 5 channel blockers HC070 and Pico145 antagonized the excitatory effects of DHPG. As proof of principle, mutagenesis of Stim1 in POMC neurons reduced food intake, attenuated weight gain, reduced body fat and fat pad mass in mice fed a high fat diet. CONCLUSIONS: Using CRISPR technology we have uncovered a critical role of STIM1 in modulating glutamatergic activation of TRPC 5 channels in POMC neurons, which ultimately is important for maintaining energy balance.


Assuntos
Neurônios , Obesidade , Molécula 1 de Interação Estromal , Animais , Masculino , Camundongos , Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mutagênese , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
9.
Nature ; 598(7882): 646-651, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646022

RESUMO

µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose1-3. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown4. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection. MOPR-mediated inhibition of raphe terminals is necessary and sufficient to determine consummatory response, while select enkephalin-containing nucleus accumbens ensembles are engaged prior to reward consumption, suggesting that local enkephalin release is the source of the endogenous MOPR ligand. Selective modulation of nucleus accumbens enkephalin neurons and CRISPR-Cas9-mediated disruption of enkephalin substantiate this finding. These results isolate a fundamental endogenous opioid circuit for state-dependent consumptive behaviour and suggest alternative mechanisms for opiate modulation of reward.


Assuntos
Analgésicos Opioides/farmacologia , Núcleo Accumbens/fisiologia , Receptores Opioides mu/fisiologia , Recompensa , Animais , Encefalinas , Feminino , Masculino , Camundongos , Camundongos Knockout
10.
Curr Biol ; 31(19): 4388-4396.e5, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34388372

RESUMO

Discrimination between predictive and non-predictive threat stimuli decreases as threat intensity increases. The central mechanisms that mediate the transition from discriminatory to generalized threat responding remain poorly resolved. Here, we identify the stress- and dysphoria-associated kappa opioid receptor (KOR) and its ligand dynorphin (Dyn), acting in the ventral tegmental area (VTA), as a key substrate for regulating threat generalization. We identify several dynorphinergic inputs to the VTA and demonstrate that projections from the bed nucleus of the stria terminalis (BNST) and dorsal raphe nucleus (DRN) both contribute to anxiety-like behavior but differentially affect threat generalization. These data demonstrate that conditioned threat discrimination has an inverted "U" relationship with threat intensity and establish a role for KOR/Dyn signaling in the midbrain for promoting threat generalization.


Assuntos
Dinorfinas , Núcleos Septais , Núcleo Dorsal da Rafe , Receptores Opioides kappa/metabolismo , Área Tegmentar Ventral/metabolismo
11.
Mol Metab ; 49: 101218, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33766732

RESUMO

OBJECTIVE: Arcuate nucleus neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons drive ingestive behavior. The M-current, a subthreshold non-inactivating potassium current, plays a critical role in regulating NPY/AgRP neuronal excitability. Fasting decreases while 17ß-estradiol increases the M-current by regulating the mRNA expression of Kcnq2, 3, and 5 (Kv7.2, 3, and 5) channel subunits. Incorporating KCNQ3 into heteromeric channels has been considered essential to generate a robust M-current. Therefore, we investigated the behavioral and physiological effects of selective Kcnq3 deletion from NPY/AgRP neurons. METHODS: We used a single adeno-associated viral vector containing a recombinase-dependent Staphylococcus aureus Cas9 with a single-guide RNA to selectively delete Kcnq3 in NPY/AgRP neurons. Single-cell quantitative measurements of mRNA expression and whole-cell patch clamp experiments were conducted to validate the selective knockdown. Body weight, food intake, and locomotor activity were measured in male mice to assess disruptions in energy balance. RESULTS: The virus reduced the expression of Kcnq3 mRNA without affecting Kcnq2 or Kcnq5. The M-current was attenuated, causing NPY/AgRP neurons to be more depolarized, exhibit a higher input resistance, and require less depolarizing current to fire action potentials, indicative of increased excitability. Although the resulting decrease in the M-current did not overtly alter ingestive behavior, it significantly reduced the locomotor activity as measured by open-field testing. Control mice on a high-fat diet exhibited an enhanced M-current and increased Kcnq2 and Kcnq3 expression, but the M-current remained significantly attenuated in KCNQ3 knockdown animals. CONCLUSIONS: The M-current plays a critical role in modulating the intrinsic excitability of NPY/AgRP neurons that is essential for maintaining energy homeostasis.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Potenciais de Ação , Animais , Peso Corporal , Sistemas CRISPR-Cas , Dieta Hiperlipídica , Estradiol/metabolismo , Jejum , Comportamento Alimentar , Feminino , Masculino , Camundongos , Neuropeptídeo Y/genética
12.
Neuron ; 109(8): 1365-1380.e5, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33740416

RESUMO

Sex differences in pain severity, response, and pathological susceptibility are widely reported, but the neural mechanisms that contribute to these outcomes remain poorly understood. Here we show that dopamine (DA) neurons in the ventrolateral periaqueductal gray/dorsal raphe (vlPAG/DR) differentially regulate pain-related behaviors in male and female mice through projections to the bed nucleus of the stria terminalis (BNST). We find that activation of vlPAG/DRDA+ neurons or vlPAG/DRDA+ terminals in the BNST reduces nociceptive sensitivity during naive and inflammatory pain states in male mice, whereas activation of this pathway in female mice leads to increased locomotion in the presence of salient stimuli. We additionally use slice physiology and genetic editing approaches to demonstrate that vlPAG/DRDA+ projections to the BNST drive sex-specific responses to pain through DA signaling, providing evidence of a novel ascending circuit for pain relief in males and contextual locomotor response in females.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Atividade Motora/fisiologia , Dor/fisiopatologia , Substância Cinzenta Periaquedutal/fisiologia , Caracteres Sexuais , Animais , Comportamento Animal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Medição da Dor
13.
J Neurosci ; 41(15): 3512-3530, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33536201

RESUMO

The cerebellum processes neural signals related to rewarding and aversive stimuli, suggesting that the cerebellum supports nonmotor functions in cognitive and emotional domains. Catecholamines are a class of neuromodulatory neurotransmitters well known for encoding such salient stimuli. Catecholaminergic modulation of classical cerebellar functions have been demonstrated. However, a role for cerebellar catecholamines in modulating cerebellar nonmotor functions is unknown. Using biochemical methods in male mice, we comprehensively mapped TH+ fibers throughout the entire cerebellum and known precerebellar nuclei. Using electrochemical (fast scan cyclic voltammetry), and viral/genetic methods to selectively delete Th in fibers innervating the lateral cerebellar nucleus (LCN), we interrogated sources and functional roles of catecholamines innervating the LCN, which is known for its role in supporting cognition. The LCN has the most TH+ fibers in cerebellum, as well as the most change in rostrocaudal expression among the cerebellar nuclei. Norepinephrine is the major catecholamine measured in LCN. Distinct catecholaminergic projections to LCN arise only from locus coeruleus, and a subset of Purkinje cells that are positive for staining of TH. LC stimulation was sufficient to produce catecholamine release in LCN. Deletion of Th in fibers innervating LCN (LCN-Th-cKO) resulted in impaired sensorimotor integration, associative fear learning, response inhibition, and working memory in LCN-Th-cKO mice. Strikingly, selective inhibition of excitatory LCN output neurons with inhibitory designer receptor exclusively activated by designer drugs led to facilitation of learning on the same working memory task impaired in LCN-Th-cKO mice. Collectively, these data demonstrate a role for LCN catecholamines in cognitive behaviors.SIGNIFICANCE STATEMENT Here, we report on interrogating sources and functional roles of catecholamines innervating the lateral nucleus of the cerebellum (LCN). We map and quantify expression of TH, the rate-limiting enzyme in catecholamine synthesis, in the entire cerebellar system, including several precerebellar nuclei. We used cyclic voltammetry and pharmacology to demonstrate sufficiency of LC stimulation to produce catecholamine release in LCN. We used advanced viral techniques to map and selectively KO catecholaminergic neurotransmission to the LCN, and characterized significant cognitive deficits related to this manipulation. Finally, we show that inhibition of excitatory LCN neurons with designer receptor exclusively activated by designer drugs, designed to mimic Gi-coupled catecholamine GPCR signaling, results in facilitation of a working memory task impaired in LCN-specific TH KO mice.


Assuntos
Núcleos Cerebelares/fisiologia , Cognição , Norepinefrina/metabolismo , Animais , Núcleos Cerebelares/citologia , Núcleos Cerebelares/metabolismo , Medo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Masculino , Memória de Curto Prazo , Camundongos , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
14.
STAR Protoc ; 1(2)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33043306

RESUMO

AAV-CRISPR/Cas9 permits gene mutagenesis in the adult CNS. Current methods determining In Vivo on-target mutagenesis have been limited by the ability to isolate virally transduced cells. This protocol optimizes a workflow for the design, cloning, and validation of sgRNAs delivered by AAVs In Vivo that can be applied to any target gene in the CNS of rat or mouse model systems and can be adapted to Cre or Flp driver lines using AAV-FLEX-SaCas9-sgRNA or AAV-FLEXfrt-SaCas9-sgRNA, respectively. For complete details on the use and execution of this protocol, please refer to Hunker et al. (2020).


Assuntos
Clonagem Molecular/métodos , RNA Guia de Cinetoplastídeos/genética , Genética Reversa , Animais , Células Cultivadas , Camundongos , Mutagênese , Ratos , Reprodutibilidade dos Testes , Genética Reversa/métodos , Genética Reversa/normas
15.
Front Cell Neurosci ; 14: 228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848620

RESUMO

Tyrosine hydroxylase (Th) expression has previously been reported in Purkinje cells (PCs) of rodents and humans, but its role in the regulation of behavior is not understood. Catecholamines are well known for facilitating cognitive behaviors and are expressed in many regions of the brain. Here, we investigated a possible role in cognitive behaviors of PC catecholamines, by mapping and testing functional roles of Th positive PCs in mice. Comprehensive mapping analyses revealed a distinct population of Th expressing PCs primarily in the posterior and lateral regions of the cerebellum (comprising about 18% of all PCs). To identify the role of PC catecholamines, we selectively knocked out Th in PCs using a conditional knockout approach, by crossing a Purkinje cell-selective Cre recombinase line, Pcp2-Cre, with a floxed tyrosine hydroxylase mouse line (Thlox/lox) to produce Pcp2-Cre;Thlox/lox mice. This manipulation resulted in approximately 50% reduction of Th protein expression in the cerebellar cortex and lateral cerebellar nucleus, but no reduction of Th in the locus coeruleus, which is known to innervate the cerebellum in mice. Pcp2-Cre;Thlox/lox mice showed impairments in behavioral flexibility, response inhibition, social recognition memory, and associative fear learning relative to littermate controls, but no deficits in gross motor, sensory, instrumental learning, or sensorimotor gating functions. Catecholamines derived from specific populations of PCs appear to support cognitive functions, and their spatial distribution in the cerebellum suggests that they may underlie patterns of activation seen in human studies on the cerebellar role in cognitive function.

16.
Neuron ; 107(5): 864-873.e4, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32610039

RESUMO

Like ventral tegmental area (VTA) dopamine (DA) neurons, VTA glutamate neuron activity can support positive reinforcement. However, a subset of VTA neurons co-release DA and glutamate, and DA release might be responsible for behavioral reinforcement induced by VTA glutamate neuron activity. To test this, we used optogenetics to stimulate VTA glutamate neurons in which tyrosine hydroxylase (TH), and thus DA biosynthesis, was conditionally ablated using either floxed Th mice or viral-based CRISPR/Cas9. Both approaches led to loss of TH expression in VTA glutamate neurons and loss of DA release from their distal terminals in nucleus accumbens (NAc). Despite loss of the DA signal, optogenetic activation of VTA glutamate cell bodies or axon terminals in NAc was sufficient to support reinforcement. These results suggest that glutamate release from VTA is sufficient to promote reinforcement independent of concomitant DA co-release, establishing a non-DA mechanism by which VTA activity can support reward-seeking behaviors.


Assuntos
Ácido Glutâmico/metabolismo , Motivação/fisiologia , Neurônios/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Comportamento Animal/fisiologia , Dopamina/metabolismo , Camundongos , Optogenética , Reforço Psicológico , Recompensa
17.
Cell Rep ; 30(12): 4303-4316.e6, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209486

RESUMO

Mice engineered for conditional, cell type-specific gene inactivation have dominated the field of mouse genetics because of the high efficiency of Cre-loxP-mediated recombination. Recent advances in CRISPR/Cas9 technologies have provided alternatives for rapid gene mutagenesis for loss-of-function (LOF) analysis. Whether these strategies can be streamlined for rapid genetic analysis with the efficiencies comparable with those of conventional genetic approaches has yet to be established. We show that a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas9) and a single guide RNA (sgRNA) are as efficient as conventional conditional gene knockout and can be adapted for use in either Cre- or Flp-driver mouse lines. The efficacy of this approach is demonstrated for the analysis of GABAergic, glutamatergic, and monoaminergic neurotransmission. Using this strategy, we reveal insight into the role of GABAergic regulation of midbrain GABA-producing neurons in psychomotor activation.


Assuntos
Envelhecimento/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Vetores Genéticos/metabolismo , Mutagênese/genética , Sistema Nervoso/metabolismo , Animais , Sequência de Bases , Linhagem Celular , DNA Nucleotidiltransferases/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Optogenética , Fenótipo
18.
Biol Psychiatry ; 84(6): 401-412, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29478701

RESUMO

BACKGROUND: Studies in humans and nonhuman primates have identified a region of the dentate nucleus of the cerebellum, or the lateral cerebellar nucleus (LCN) in rodents, activated during performance of cognitive tasks involving complex spatial and sequential planning. Whether such a subdivision exists in rodents is not known. Dopamine and its receptors, which are implicated in cognitive function, are present in the cerebellar nuclei, but their function is unknown. METHODS: Using viral and genetic strategies in mice, we examined cellular phenotypes of dopamine D1 receptor-positive (D1R+) cells in the LCN with whole-cell patch clamp recordings, messenger RNA profiling, and immunohistochemistry to examine D1R expression in mouse LCN and human dentate nucleus of the cerebellum. We used chemogenetics to inhibit D1R+ neurons and examined behaviors including spatial navigation, social recognition memory, prepulse inhibition of the acoustic startle reflex, response inhibition, and working memory to test the necessity of these neurons in these behaviors. RESULTS: We identified a population of D1R+ neurons that are localized to an anatomically distinct region of the LCN. We also observed D1R+ neurons in human dentate nucleus of the cerebellum, which suggests an evolutionarily conserved population of dopamine-receptive neurons in this region. The genetic, electrophysiological, and anatomical profile of mouse D1R neurons is consistent with a heterogeneous population of gamma-aminobutyric acidergic, and to a lesser extent glutamatergic, cell types. Selective inhibition of D1R+ LCN neurons impairs spatial navigation memory, response inhibition, working memory, and prepulse inhibition of the acoustic startle reflex. CONCLUSIONS: Collectively, these data demonstrate a functional link between genetically distinct neurons in the LCN and cognitive behaviors.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/metabolismo , Comportamento Social , Animais , Comportamento Animal , Feminino , Masculino , Camundongos , Técnicas de Patch-Clamp , Reconhecimento Fisiológico de Modelo , Reflexo de Sobressalto , Memória Espacial
19.
Elife ; 62017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394253

RESUMO

The maintenance of excitatory and inhibitory balance in the brain is essential for its function. Here we find that the developmental axon guidance receptor Roundabout 2 (Robo2) is critical for the maintenance of inhibitory synapses in the adult ventral tegmental area (VTA), a brain region important for the production of the neurotransmitter dopamine. Following selective genetic inactivation of Robo2 in the adult VTA of mice, reduced inhibitory control results in altered neural activity patterns, enhanced phasic dopamine release, behavioral hyperactivity, associative learning deficits, and a paradoxical inversion of psychostimulant responses. These behavioral phenotypes could be phenocopied by selective inactivation of synaptic transmission from local GABAergic neurons of the VTA, demonstrating an important function for Robo2 in regulating the excitatory and inhibitory balance of the adult brain.


Assuntos
Dopamina/metabolismo , Receptores Imunológicos/metabolismo , Transmissão Sináptica , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico/metabolismo
20.
Brain ; 138(Pt 8): 2219-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26017580

RESUMO

Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types.


Assuntos
Epilepsias Mioclônicas/genética , Deleção de Genes , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Potenciais de Ação/fisiologia , Animais , Epilepsias Mioclônicas/diagnóstico , Epilepsia/genética , Feminino , Neurônios GABAérgicos/metabolismo , Heterozigoto , Hipocampo/fisiopatologia , Masculino , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...