Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cytometry A ; 103(3): 208-220, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35899783

RESUMO

Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets. Thus, a platform capable of measuring time-dependent CAR-T cell mediated killing and then isolating single cells for downstream assays would be invaluable in characterizing CAR-T cells. An automated microraft array platform was designed to track CD19 CAR-T cell killing of CD19+ target cells and CAR-T cell motility over time followed by CAR-T cell collection based on killing behavior. The platform demonstrated automated CAR-T cell counting with up to 98% specificity and 96% sensitivity, and single cells were isolated with 89% efficiency. On average, 2.3% of single CAR-T cells were shown to participate in serial-killing of target cells, killing a maximum of three target cells in a 6 h period. The cytotoxicity and motility of >7000 individual CAR-T cells was tracked across four microraft arrays. The automated microraft array platform measured temporal cell-mediated cytotoxicity, CAR-T cell motility, CAR-T cell death, and CAR-T cell to target cell distances, followed by the capability to sort any desired CAR-T cell. The pipeline has the potential to further our understanding of T cell-based cancer immunotherapies and improve cell-therapy products for better patient outcomes.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Imunoterapia , Separação Celular , Receptores de Antígenos de Linfócitos T
2.
Bioinform Adv ; 2(1): vbac032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669345

RESUMO

Motivation: Splice variant neoantigens are a potential source of tumor-specific antigen (TSA) that are shared between patients in a variety of cancers, including acute myeloid leukemia. Current tools for genomic prediction of splice variant neoantigens demonstrate promise. However, many tools have not been well validated with simulated and/or wet lab approaches, with no studies published that have presented a targeted immunopeptidome mass spectrometry approach designed specifically for identification of predicted splice variant neoantigens. Results: In this study, we describe NeoSplice, a novel computational method for splice variant neoantigen prediction based on (i) prediction of tumor-specific k-mers from RNA-seq data, (ii) alignment of differentially expressed k-mers to the splice graph and (iii) inference of the variant transcript with MHC binding prediction. NeoSplice demonstrates high sensitivity and precision (>80% on average across all splice variant classes) through in silico simulated RNA-seq data. Through mass spectrometry analysis of the immunopeptidome of the K562.A2 cell line compared against a synthetic peptide reference of predicted splice variant neoantigens, we validated 4 of 37 predicted antigens corresponding to 3 of 17 unique splice junctions. Lastly, we provide a comparison of NeoSplice against other splice variant prediction tools described in the literature. NeoSplice provides a well-validated platform for prediction of TSA vaccine targets for future cancer antigen vaccine studies to evaluate the clinical efficacy of splice variant neoantigens. Availability and implementation: https://github.com/Benjamin-Vincent-Lab/NeoSplice. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
J Proteome Res ; 19(8): 3176-3183, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627559

RESUMO

Tandem mass spectrometry (MS/MS) is a highly sensitive and selective method for the detection of tumor-associated peptide antigens. These short, nontryptic sequences may lack basic residues, resulting in the formation of predominantly [peptide + H]+ ions in electrospray. These singly charged ions tend to undergo inefficient dissociation, leading to issues in sequence determination. Addition of alkali metal salts to the electrospray solvent can drive the formation of [peptide + H + metal]2+ ions that have enhanced dissociation characteristics relative to [peptide + H]+ ions. Both previously identified tumor-associated antigens and predicted neoantigen sequences were investigated. The previously reported rearrangement mechanism in MS/MS of sodium-cationized peptides is applied here to demonstrate complete C-terminal sequencing of tumor-associated peptide antigens. Differential ion mobility spectrometry (DIMS) is shown to selectively enrich [peptide + H + metal]2+ species by filtering out singly charged interferences at relatively low field strengths, offsetting the decrease in signal intensity associated with the use of alkali metal cations.


Assuntos
Espectrometria de Mobilidade Iônica , Metais Alcalinos , Cátions , Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
Blood Adv ; 2(16): 2052-2062, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115642

RESUMO

T-cell responses to minor histocompatibility antigens (mHAs) mediate both antitumor immunity (graft-versus-leukemia [GVL]) and graft-versus-host disease (GVHD) in allogeneic stem cell transplant. Identifying mHAs with high allele frequency, tight binding affinity to common HLA molecules, and narrow tissue restriction could enhance immunotherapy against leukemia. Genotyping and HLA allele data from 101 HLA-matched donor-recipient pairs (DRPs) were computationally analyzed to predict both class I and class II mHAs likely to induce either GVL or GVHD. Roughly twice as many mHAs were predicted in HLA-matched unrelated donor (MUD) stem cell transplantation (SCT) compared with HLA-matched related transplants, an expected result given greater genetic disparity in MUD SCT. Computational analysis predicted 14 of 18 previously identified mHAs, with 2 minor antigen mismatches not being contained in the patient cohort, 1 missed mHA resulting from a noncanonical translation of the peptide antigen, and 1 case of poor binding prediction. A predicted peptide epitope derived from GRK4, a protein expressed in acute myeloid leukemia and testis, was confirmed by targeted differential ion mobility spectrometry-tandem mass spectrometry. T cells specific to UNC-GRK4-V were identified by tetramer analysis both in DRPs where a minor antigen mismatch was predicted and in DRPs where the donor contained the allele encoding UNC-GRK4-V, suggesting that this antigen could be both an mHA and a cancer-testis antigen. Computational analysis of genomic and transcriptomic data can reliably predict leukemia-associated mHA and can be used to guide targeted mHA discovery.


Assuntos
Simulação por Computador , Transplante de Células-Tronco Hematopoéticas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Imunológicos , Síndromes Mielodisplásicas , Aloenxertos , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Efeito Enxerto vs Leucemia/imunologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/terapia , Doadores não Relacionados
5.
J Gerontol A Biol Sci Med Sci ; 73(12): 1643-1650, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29878083

RESUMO

Older adults suffer a disproportionate burden of influenza-related morbidity and mortality typically attributed to defects in the aging immune system collectively known as immunosenescence. While the age-related decline in the adaptive immune system has been well characterized, little is known about how aging affects the principal site of influenza infection-the nasal epithelium. In human nasal epithelial cell cultures (hNECs) from older adults, we found similar or increased levels of cytokines during influenza infection compared with hNECs from younger individuals. However, hNECs from older individuals demonstrated decreased mRNA expression for several key proteins that affect clearance of infected cells, including MHC-I and transporter associated with antigen presentation (TAP). These findings were confirmed at the level of protein expression. In vivo studies corroborated the in vitro differences in MHC-I and TAP gene expression and also revealed important decreases in the expression of key influenza-specific antiviral mediators MX1 and IFITM1. Furthermore, epithelial cell-cytotoxic T lymphocyte co-cultures demonstrate that CTL cytotoxic activity is dose-dependent on MHC-I antigen presentation. Taken together, these results indicate that aging is associated with important changes in the nasal epithelium, including antigen presentation and antiviral pathways, which may contribute to increased severity of disease in older adults through impaired clearance of infected cells.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata/imunologia , Imunossenescência/fisiologia , Influenza Humana/imunologia , Orthomyxoviridae/patogenicidade , Adulto , Idoso , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Influenza Humana/mortalidade , Influenza Humana/fisiopatologia , Masculino , Mucosa Nasal/citologia , RNA Mensageiro/imunologia , Medição de Risco , Estatísticas não Paramétricas , Adulto Jovem
6.
Biosens Bioelectron ; 91: 175-182, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28006686

RESUMO

Microraft arrays have been used to screen and then isolate adherent and non-adherent cells with very high efficiency and excellent viability; however, manual screening and isolation limits the throughput and utility of the technology. In this work, novel hardware and software were developed to automate the microraft array platform. The developed analysis software identified microrafts on the array with greater than 99% sensitivity and cells on the microrafts with 100% sensitivity. The software enabled time-lapse imaging and the use of temporally varying characteristics as sort criteria. The automated hardware released microrafts with 98% efficiency and collected released microrafts with 100% efficiency. The automated system was used to examine the temporal variation in EGFP expression in cells transfected with CRISPR-Cas9 components for gene editing. Of 11,499 microrafts possessing a single cell, 220 microrafts were identified as possessing temporally varying EGFP-expression. Candidate cells (n=172) were released and collected from the microraft array and screened for the targeted gene mutation. Two cell colonies were successfully gene edited demonstrating the desired mutation.


Assuntos
Técnicas Biossensoriais/instrumentação , Sistemas CRISPR-Cas , Mutação , Fator de Processamento U2AF/genética , Análise Serial de Tecidos/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Processamento de Imagem Assistida por Computador , Células K562 , Leucemia/genética , Análise Serial de Tecidos/métodos , Transfecção
7.
Integr Biol (Camb) ; 8(12): 1208-1220, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27853786

RESUMO

The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems. We have developed a microraft array methodology that automatically measures the ability of individual T cells to kill a population of target cells and viably sorts specific cells into a 96-well plate for expansion. A human T cell culture was generated against the influenza M1p antigen. Individual microrafts on a 70 × 70 array were loaded with on average 1 CD8+ cell from the culture and a population of M1p presenting target cells. Target cell killing, measured by fluorescence microscopy, was quantified in each microraft. The rates of target cell death among the individual CD8+ T cells varied greatly; however, individual T cells maintained their rates of cytotoxicity throughout the time course of the experiment enabling rapid identification of highly cytotoxic CD8+ T cells. Microrafts with highly active CD8+ T cells were individually transferred to wells of a 96-well plate, using a needle-release device coupled to the microscope. Three sorted T cells clonally expanded. All of these expressed high-avidity T cell receptors for M1p/HLA*02:01 tetramers, and 2 of the 3 receptors were sequenced. While this study investigated single T cell cytotoxicity rates against simple targets with subsequent cell sorting, future studies will involve measuring T cell mediated cytotoxicity in more complex cellular environments, enlarging the arrays to identify very rare antigen specific T cells, and measuring single cell CD4+ and CD8+ T cell proliferation.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Mapeamento de Epitopos/instrumentação , Imunoensaio/instrumentação , Dispositivos Lab-On-A-Chip , Linfócitos T Citotóxicos/imunologia , Separação Celular , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Células Matadoras Naturais/imunologia , Análise Serial de Tecidos/instrumentação
8.
Analyst ; 141(2): 640-51, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26523411

RESUMO

We report a highly sensitive microfluidic assay to detect minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) that samples peripheral blood to search for circulating leukemic cells (CLCs). Antibodies immobilized within three separate microfluidic devices affinity-selected CLC subpopulations directly from peripheral blood without requiring pre-processing. The microfluidic devices targeted CD33, CD34, and CD117 cell surface antigens commonly expressed by AML leukemic cells so that each subpopulation's CLC numbers could be tracked to determine the onset of relapse. Staining against aberrant markers (e.g. CD7, CD56) identified low levels (11-2684 mL(-1)) of CLCs. The commonly used platforms for the detection of MRD for AML patients are multi-parameter flow cytometry (MFC), typically from highly invasive bone marrow biopsies, or PCR from blood samples, which is limited to <50% of AML patients. In contrast, the microfluidic assay is a highly sensitive blood test that permits frequent sampling for >90% of all AML patients using the markers selected for this study (selection markers CD33, CD34, CD117 and aberrant markers such as CD7 and CD56). We present data from AML patients after stem cell transplant (SCT) therapy using our assay. We observed high agreement of the microfluidic assay with therapeutic treatment and overall outcome. We could detect MRD at an earlier stage compared to both MFC and PCR directly from peripheral blood, obviating the need for a painful bone marrow biopsy. Using the microfluidic assay, we detected MRD 28 days following one patient's SCT and the onset of relapse at day 57, while PCR from a bone marrow biopsy did not detect MRD until day 85 for the same patient. Earlier detection of MRD in AML post-SCT enabled by peripheral blood sampling using the microfluidic assay we report herein can influence curative clinical decisions for AML patients.


Assuntos
Dispositivos Lab-On-A-Chip , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/patologia , Células Neoplásicas Circulantes/patologia , Animais , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/cirurgia , Neoplasia Residual/sangue , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Recidiva , Sensibilidade e Especificidade
9.
Anal Chem ; 87(24): 12281-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26558605

RESUMO

Microraft arrays were developed to select and separate cells based on a complex phenotype, weak intercellular adhesion, without knowledge of cell-surface markers or intracellular proteins. Since the cells were also not competent to bind to a culture surface, a method to encapsulate nonadherent cells within a gelatin plug on the concave microraft surface was developed, enabling release and collection of the cells without the need for cell attachment to the microraft surface. After microraft collection, the gelatin was liquified to release the cell(s) for culture or analysis. A semiautomated release and collection device for the microrafts demonstrated 100 ± 0% collection efficiency of the microraft while increasing throughput 5-fold relative to that of manual release and collection. Using the microraft array platform along with the gelatin encapsulation method, single cells that were not surface-attached were isolated with a 100 ± 0% efficiency and a 96 ± 4% postsort single-cell cloning efficiency. As a demonstration, Epstein-Barr virus-infected lymphoblastoid cell lines (EBV-LCL) were isolated based on their intercellular adhesive properties. The identified cell colonies were collected with a 100 ± 0% sorting efficiency and a postsort viability of 87 ± 3%. When gene expression analysis of the EBV latency-associated gene, EBNA-2, was performed, there was no difference in expression between blasting or weakly adhesive cells and nonblasting or nonadhesive cells. Microraft arrays are a versatile method enabling separation of cells based on complicated and as yet poorly understood cell phenotypes.


Assuntos
Separação Celular/métodos , Herpesvirus Humano 4/fisiologia , Análise em Microsséries , Análise de Célula Única , Adesão Celular , Separação Celular/instrumentação , Sobrevivência Celular , Dimetilpolisiloxanos/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Humanos , Células K562 , Análise em Microsséries/instrumentação , Nylons/química , Tamanho da Partícula , Análise de Célula Única/instrumentação , Propriedades de Superfície , Células Tumorais Cultivadas , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Cancer Immunol Res ; 3(3): 228-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576336

RESUMO

Testing of T cell-based cancer therapeutics often involves measuring cancer antigen-specific T-cell populations with the assumption that they arise from in vivo clonal expansion. This analysis, using peptide/MHC tetramers, is often ambiguous. From a leukemia cell line, we identified a CDK4-derived peptide epitope, UNC-CDK4-1 (ALTPVVVTL), that bound HLA-A*02:01 with high affinity and could induce CD8⁺ T-cell responses in vitro. We identified UNC-CDK4-1/HLA-A*02:01 tetramer⁺ populations in 3 of 6 patients with acute myeloid leukemia who had undergone allogeneic stem cell transplantation. Using tetramer-based, single-cell sorting and T-cell receptor ß (TCRß) sequencing, we identified recurrent UNC-CDK4-1 tetramer-associated TCRß clonotypes in a patient with a UNC-CDK4-1 tetramer⁺ population, suggesting in vivo T-cell expansion to UNC-CDK4-1. In parallel, we measured the patient's TCRß repertoire and found it to be highly restricted/oligoclonal. The UNC-CDK4-1 tetramer-associated TCRß clonotypes represented >17% of the entire TCRß repertoire-far in excess of the UNC-CDK4-1 tetramer⁺ frequency-indicating that the recurrent TCRß clonotypes identified from UNC-CDK-4-1 tetramer⁺ cells were likely a consequence of the extremely constrained T-cell repertoire in the patient and not in vivo UNC-CDK4-1-driven clonal T-cell expansion. Mapping recurrent TCRß clonotype sequences onto TCRß repertoires can help confirm or refute antigen-specific T-cell expansion in vivo.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Subpopulações de Linfócitos T/imunologia , Feminino , Antígeno HLA-A2/imunologia , Humanos , Leucemia/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Células U937
12.
Anal Bioanal Chem ; 406(27): 7027-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24980601

RESUMO

Sphingosine kinase (SK) is a promising therapeutic target in a number of cancers, including leukemia. Traditionally, SK has been measured in bulk cell lysates, but this technique obscures the cellular heterogeneity present in this pathway. For this reason, SK activity was measured in single cells loaded with a fluorescent sphingosine reporter. An automated capillary electrophoresis (CE) system enabled rapid separation and quantification of the phosphorylated and nonphosphorylated sphingosine reporter in single cells. SK activity was measured in tissue-cultured cells derived from chronic myelogenous leukemia (K562), primary peripheral blood mononuclear cells (PBMCs) from three patients with different forms of leukemia, and enriched leukemic blasts from a patient with acute myeloid leukemia (AML). Significant intercellular heterogeneity existed in terms of the degree of reporter phosphorylation (as much as an order of magnitude difference), the amount of reporter uptake, and the metabolites formed. In K562 cells, the average amount of reporter converted to the phosphorylated form was 39 ± 26% per cell. Of the primary PBMCs analyzed, the average amount of phosphorylated reporter was 16 ± 25%, 11 ± 26%, and 13 ± 23% in a chronic myelogenous leukemia (CML) patient, an AML patient, and a B-cell acute lymphocytic leukemia (B-ALL) patient, respectively. These experiments demonstrated the challenge of studying samples comprised of multiple cell types, with tumor blasts present at 5 to 87% of the cell population. When the leukemic blasts from a fourth patient with AML were enriched to 99% of the cell population, 19 ± 36% of the loaded sphingosine was phosphorylated. Thus, the diversity in SK activity remained even in a nearly pure tumor sample. These enriched AML blasts loaded significantly less reporter (0.12 ± 0.2 amol) relative to that loaded into the PBMCs in the other samples (≥1 amol). The variability in SK signaling may have important implications for SK inhibitors as therapeutics for leukemia and demonstrates the value of single-cell analysis in characterizing the nature of oncogenic signaling in cancer.


Assuntos
Leucemia/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Eletroforese Capilar , Humanos , Células K562
13.
Analyst ; 139(6): 1355-63, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24487280

RESUMO

We present a novel microfluidic solid-phase extraction (µSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the µSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the µSPE device using computational simulations of different micropillar geometries to guide future device designs.


Assuntos
Proteínas de Membrana/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Polimetil Metacrilato/química , Extração em Fase Sólida/instrumentação , Biotinilação , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Solubilidade , Raios Ultravioleta
14.
Clin Cancer Res ; 19(1): 247-57, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23147993

RESUMO

PURPOSE: Immunotherapy targeting aberrantly expressed leukemia-associated antigens has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy. EXPERIMENTAL DESIGN: We used Immune Epitope Database and in vitro binding assays to identify immunogenic epitopes derived from CG. Flow cytometry, immunoblotting, and confocal microscopy were used to characterize the expression and processing of CG in AML patient samples, leukemia stem cells, and normal neutrophils. Cytotoxicity assays determined the susceptibility of AML to CG-specific cytotoxic T lymphocytes (CTL). Dextramer staining and cytokine flow cytometry were conducted to characterize the immune response to CG in patients. RESULTS: CG was highly expressed and ubiquitinated in AML blasts, and was localized outside granules in compartments that facilitate antigen presentation. We identified five HLA-A*0201 binding nonameric peptides (CG1-CG5) derived from CG, and showed immunogenicity of the highest HLA-A*0201 binding peptide, CG1. We showed killing of primary AML by CG1-CTL, but not normal bone marrow. Blocking HLA-A*0201 abrogated CG1-CTL-mediated cytotoxicity, further confirming HLA-A*0201-dependent killing. Finally, we showed functional CG1-CTLs in peripheral blood from AML patients following allogeneic stem cell transplantation. CONCLUSION: CG is aberrantly expressed and processed in AML and is a novel immunotherapeutic target that warrants further development.


Assuntos
Catepsina G/imunologia , Antígeno HLA-A2/imunologia , Leucemia Mieloide Aguda/imunologia , Peptídeos/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Catepsina G/química , Catepsina G/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Epitopos/imunologia , Epitopos/metabolismo , Antígeno HLA-A2/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoterapia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Peptídeos/metabolismo , Ligação Proteica/imunologia , Transporte Proteico , Linfócitos T Citotóxicos/imunologia , Transplante Homólogo
15.
PLoS One ; 6(8): e23217, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858034

RESUMO

BACKGROUND: Minor histocompatibility antigens (mHA) mediate much of the graft vs. leukemia (GvL) effect and graft vs. host disease (GvHD) in patients who undergo allogeneic stem cell transplantation (SCT). Therapeutic decision making and treatments based upon mHAs will require the evaluation of multiple candidate mHAs and the selection of those with the potential to have the greatest impact on clinical outcomes. We hypothesized that common, immunodominant mHAs, which are presented by HLA-A, B, and C molecules, can mediate clinically significant GvL and/or GvHD, and that these mHAs can be identified through association of genomic data with clinical outcomes. METHODOLOGY/PRINCIPAL FINDINGS: Because most mHAs result from donor/recipient cSNP disparities, we genotyped 57 myeloid leukemia patients and their donors at 13,917 cSNPs. We correlated the frequency of genetically predicted mHA disparities with clinical evidence of an immune response and then computationally screened all peptides mapping to the highly associated cSNPs for their ability to bind to HLA molecules. As proof-of-concept, we analyzed one predicted antigen, T4A, whose mHA mismatch trended towards improved overall and disease free survival in our cohort. T4A mHA mismatches occurred at the maximum theoretical frequency for any given SCT. T4A-specific CD8+ T lymphocytes (CTLs) were detected in 3 of 4 evaluable post-transplant patients predicted to have a T4A mismatch. CONCLUSIONS/SIGNIFICANCE: Our method is the first to combine clinical outcomes data with genomics and bioinformatics methods to predict and confirm a mHA. Refinement of this method should enable the discovery of clinically relevant mHAs in the majority of transplant patients and possibly lead to novel immunotherapeutics.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Leucemia Mieloide/genética , Leucemia Mieloide/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Adulto , Idoso , Sequência de Aminoácidos , Estudos de Coortes , Epitopos de Linfócito T/imunologia , Feminino , Frequência do Gene , Predisposição Genética para Doença/genética , Genoma Humano/genética , Genótipo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Leucemia/genética , Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide/cirurgia , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
16.
Br J Haematol ; 152(5): 579-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21241278

RESUMO

Signalling through the interleukin (IL)-6 pathway induces proliferation and drug resistance of multiple myeloma cells. We therefore sought to determine whether the IL-6-neutralizing monoclonal antibody siltuximab, formerly CNTO 328, could enhance the activity of melphalan, and to examine some of the mechanisms underlying this interaction. Siltuximab increased the cytotoxicity of melphalan in KAS-6/1, INA-6, ANBL-6, and RPMI 8226 human myeloma cell lines (HMCLs) in an additive-to-synergistic manner, and sensitized resistant RPMI 8226.LR5 cells to melphalan. These anti-proliferative effects were accompanied by enhanced activation of drug-specific apoptosis in HMCLs grown in suspension, and in HMCLs co-cultured with a human-derived stromal cell line. Siltuximab with melphalan enhanced activation of caspase-8, caspase-9, and the downstream effector caspase-3 compared with either of the single agents. This increased induction of cell death occurred in association with enhanced Bak activation. Neutralization of IL-6 also suppressed signalling through the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased phosphorylation of Akt, p70 S6 kinase and 4E-BP1. Importantly, the siltuximab/melphalan regimen demonstrated enhanced anti-proliferative effects against primary plasma cells derived from patients with myeloma, monoclonal gammopathy of undetermined significance, and amyloidosis. These studies provide a rationale for translation of siltuximab into the clinic in combination with melphalan-based therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Interleucina-6/antagonistas & inibidores , Mieloma Múltiplo/patologia , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melfalan/administração & dosagem , Melfalan/farmacologia , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Plasmócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Br J Haematol ; 145(4): 481-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19344406

RESUMO

Interleukin (IL)-6-mediated signalling attenuates the anti-myeloma activity of glucocorticoids (GCs). We therefore sought to evaluate whether CNTO 328, an anti-IL-6 monoclonal antibody in clinical development, could enhance the apoptotic activity of dexamethasone (dex) in pre-clinical models of myeloma. CNTO 328 potently increased the cytotoxicity of dex in IL-6-dependent and -independent human myeloma cell lines (HMCLs), including a bortezomib-resistant HMCL. Isobologram analysis revealed that the CNTO 328/dex combination was highly synergistic. Addition of bortezomib to CNTO 328/dex further enhanced the cytotoxicity of the combination. Experiments with pharmacologic inhibitors revealed a role for the p44/42 mitogen-activated protein kinase pathway in IL-6-mediated GC resistance. Although CNTO 328 alone induced minimal cell death, it potentiated dex-mediated apoptosis, as evidenced by increased activation of caspases-8, -9 and -3, Annexin-V staining and DNA fragmentation. The ability of CNTO 328 to sensitize HMCLs to dex-mediated apoptosis was preserved in the presence of human bone marrow stromal cells. Importantly, the increased activity of the combination was also seen in plasma cells from patients with GC-resistant myeloma. Taken together, our data provide a strong rationale for the clinical development of the CNTO 328/dex regimen for patients with myeloma.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Dexametasona/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Interleucina-6/imunologia , Mieloma Múltiplo/tratamento farmacológico , Ácidos Borônicos/uso terapêutico , Bortezomib , Morte Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Mieloma Múltiplo/imunologia , Inibidores de Proteases/uso terapêutico , Pirazinas/uso terapêutico , Recidiva
18.
Blood ; 113(19): 4667-76, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19050304

RESUMO

Proteasome inhibition is a validated strategy for therapy of multiple myeloma, but this disease remains challenging as relapses are common, and often associated with increasing chemoresistance. Moreover, nonspecific proteasome inhibitors such as bortezomib can induce peripheral neuropathy and other toxicities that may compromise the ability to deliver therapy at full doses, thereby decreasing efficacy. One novel approach may be to target the immunoproteasome, a proteasomal variant found predominantly in cells of hematopoietic origin that differs from the constitutive proteasome found in most other cell types. Using purified preparations of constitutive and immunoproteasomes, we screened a rationally designed series of peptidyl-aldehydes and identified several with relative specificity for the immunoproteasome. The most potent immunoproteasome-specific inhibitor, IPSI-001, preferentially targeted the beta1(i) subunit of the immunoproteasome in vitro and in cellulo in a dose-dependent manner. This agent induced accumulation of ubiquitin-protein conjugates, proapoptotic proteins, and activated caspase-mediated apoptosis. IPSI-001 potently inhibited proliferation in myeloma patient samples and other hematologic malignancies. Importantly, IPSI-001 was able to overcome conventional and novel drug resistance, including resistance to bortezomib. These findings provide a rationale for the translation of IPSIs to the clinic, where they may provide antimyeloma activity with greater specificity and less toxicity than current inhibitors.


Assuntos
Ácidos Borônicos/farmacologia , Dipeptídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacologia , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Ligação Competitiva , Bortezomib , Células Cultivadas , Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Dexametasona/farmacologia , Dipeptídeos/síntese química , Sinergismo Farmacológico , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Immunoblotting , Mieloma Múltiplo/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteases/síntese química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo
19.
Clin Cancer Res ; 13(21): 6469-78, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17975159

RESUMO

PURPOSE: Inhibition of the proteasome leads to the activation of survival pathways in addition to those that promote cell death. We hypothesized that down-regulation of interleukin-6 (IL-6) signaling using the monoclonal antibody CNTO 328 would enhance the antitumor activity of the proteasome inhibitor bortezomib in multiple myeloma by attenuating inducible chemoresistance. EXPERIMENTAL DESIGN: The cytotoxicity of bortezomib, CNTO 328, and the combination, along with the associated molecular changes, was assessed in IL-6-dependent and IL-6-independent multiple myeloma cell lines, both in suspension and in the presence of bone marrow stromal cells and in patient-derived myeloma samples. RESULTS: Treatment of IL-6-dependent and IL-6-independent multiple myeloma cell lines with CNTO 328 enhanced the cytotoxicity of bortezomib in a sequence-dependent fashion. This effect was additive to synergistic and was preserved in the presence of bone marrow stromal cells and in CD138(+) myeloma samples derived from patients with relative clinical resistance to bortezomib. CNTO 328 potentiated bortezomib-mediated activation of caspase-8 and caspase-9 and the common downstream effector caspase-3; attenuated bortezomib-mediated induction of antiapoptotic heat shock protein-70, which correlated with down-regulation of phosphorylated signal transducer and activator of transcription-1; and inhibited bortezomib-mediated accumulation of myeloid cell leukemia-1, an effect that was associated with down-regulation of phosphorylated signal transducer and activator of transcription-3. CONCLUSIONS: Taken together, our results provide a strong preclinical rationale for the clinical development of the bortezomib/CNTO 328 combination for patients with myeloma.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Interleucina-6/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Pirazinas/farmacologia , Transdução de Sinais , Apoptose , Células da Medula Óssea/metabolismo , Bortezomib , Fragmentação do DNA , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imunoterapia/métodos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Sindecana-1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...