Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 374: 114675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216109

RESUMO

Huntington's Disease (HD) is a progressive neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation leads to a toxic gain of function of the mutant huntingtin (mHtt) protein resulting in cellular malfunction, aberrant huntingtin aggregation and eventually neuronal cell death. Patients with HD show impaired motor functions and cognitive decline. Elevated levels of glucocorticoids have been found in HD patients and in HD mouse models, and there is a positive correlation between increased glucocorticoid levels and the progression of HD. Therefore, antagonism of the glucocorticoid receptor (GR) may be an interesting strategy for the treatment of HD. In this study, we evaluated the efficacy of the selective GR antagonist CORT113176 in the commonly used R6/2 mouse model. In male mice, CORT113176 treatment significantly delayed the loss of grip strength, the development of hindlimb clasping, gait abnormalities, and the occurrence of epileptic seizures. CORT113176 treatment delayed loss of DARPP-32 immunoreactivity in the dorsolateral striatum. It also restored HD-related parameters including astrocyte markers in both the dorsolateral striatum and the hippocampus, and microglia markers in the hippocampus. This suggests that CORT113176 has both cell-type and brain region-specific effects. CORT113176 delayed the formation of mHtt aggregates in the striatum and the hippocampus. In female mice, we did not observe major effects of CORT113176 treatment on HD-related symptoms, with the exception of the anti-epileptic effects. We conclude that CORT113176 effectively delays several key symptoms related to the HD phenotype in male R6/2 mice and believe that GR antagonism may be a possible treatment option.


Assuntos
Doença de Huntington , Isoquinolinas , Doenças Neurodegenerativas , Pirazóis , Animais , Feminino , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/complicações , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Receptores de Glucocorticoides
2.
Mol Neurobiol ; 61(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37566177

RESUMO

Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1ß and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1ß, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.


Assuntos
Proteína HMGB1 , Isoquinolinas , Doenças Neurodegenerativas , Pirazóis , Masculino , Camundongos , Humanos , Animais , Receptores de Glucocorticoides/metabolismo , Corticosterona , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Gliose/metabolismo , Receptor 4 Toll-Like/metabolismo , Glucocorticoides/farmacologia , Medula Espinal/metabolismo , Doenças Neurodegenerativas/metabolismo
3.
Eur J Pharmacol ; 957: 176012, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634839

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common condition that can progress to the more severe conditions like non-alcoholic steatohepatitis (NASH) for which limited effective therapeutic options are available. In this study, we set out to evaluate the novel glucocorticoid receptor modulator CORT125385, an analogue of the previously studied miricorilant but without mineralocorticoid receptor binding activity. Male and female mice that received high-fat diet and fructose water were treated with either vehicle, CORT125385 or mifepristone. We found that CORT125385 significantly lowered hepatic triglyceride levels in male mice, and hepatic triglyceride and cholesterol levels in female mice. Mifepristone treatment had no effect in male mice, but significantly lowered hepatic triglyceride and cholesterol levels in female mice. In reporter assays in vitro, CORT125385 showed weak partial agonism on the progesterone receptor (PR) at high doses, as well as PR antagonism at a potency 1000-fold lower than mifepristone. In vivo, CORT125385 treatment did not influence PR-responsive gene expression in the oviduct, while mifepristone treatment strongly influenced these genes in the oviduct, thus excluding in vivo PR cross-reactivity of CORT125385 at a therapeutically active dose. We conclude that CORT125385 is a promising glucocorticoid receptor modulator that effectively reduces liver steatosis in male and female mice without affecting other steroid receptors at doses that lower hepatic lipid content.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores de Glucocorticoides , Feminino , Masculino , Animais , Camundongos , Mifepristona/farmacologia , Mifepristona/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Colesterol
4.
Int Immunopharmacol ; 120: 110312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230031

RESUMO

Cortisol, an endogenous glucocorticoid receptor (GR) agonist, controls a broad transcriptional program that affects T-cell activation, pro-inflammatory cytokine secretion, apoptosis, and immune-cell trafficking. The degree to which endogenous cortisol blunts the anti-tumor immune response checkpoint inhibitors stimulate had not been assessed. We addressed this question using relacorilant, a selective GR modulator (SGRM) that competitively antagonizes the effects of cortisol activity. GR expression in human tumor and immune cells positively correlated with PD-L1 expression and tumor infiltration of Th2 and Treg cells, and negatively correlated with Th1-cell infiltration. In vitro, cortisol inhibited, and relacorilant restored, T-cell activation and pro-inflammatory cytokine secretion in human peripheral blood mononuclear cells. In the ovalbumin-expressing EG7 and MC38 immune-competent tumor models, relacorilant significantly improved anti-PD-1 antibody efficacy and showed favorable effects on antigen-specific T-cells and systemic TNFα and IL-10. These data characterize the broad immunosuppressive effects of endogenous cortisol and highlight the potential of combining an SGRM with an immune checkpoint inhibitor.


Assuntos
Hidrocortisona , Receptores de Glucocorticoides , Humanos , Hidrocortisona/farmacologia , Receptores de Glucocorticoides/agonistas , Leucócitos Mononucleares , Glucocorticoides/farmacologia
5.
J Endocrinol ; 256(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445262

RESUMO

Glucocorticoid stress hormones are produced in response to hypothalamic-pituitary-adrenal (HPA) axis activation. Glucocorticoids are essential for physiology and exert numerous actions via binding to the glucocorticoid receptor (GR). Relacorilant is a highly selective GR antagonist currently undergoing a phase 3 clinical evaluation for the treatment of endogenous Cushing's syndrome. It was found that increases in serum adrenocorticotropic hormone (ACTH) and cortisol concentrations after relacorilant treatment were substantially less than the increases typically observed with mifepristone, but it is unclear what underlies these differences. In this study, we set out to further preclinically characterize relacorilant in comparison to the classical but non-selective GR antagonist mifepristone. In human HEK-293 cells, relacorilant potently antagonized dexamethasone- and cortisol-induced GR signaling, and in human peripheral blood mononuclear cells, relacorilant largely prevented the anti-inflammatory effects of dexamethasone. In mice, relacorilant treatment prevented hyperinsulinemia and immunosuppression caused by increased corticosterone exposure. Relacorilant treatment reduced the expression of classical GR target genes in peripheral tissues but not in the brain. In mice, relacorilant induced a modest disinhibition of the HPA axis as compared to mifepristone. In line with this, in mouse pituitary cells, relacorilant was generally less potent than mifepristone in regulating Pomc mRNA and ACTH release. This contrast between relacorilant and mifepristone is possibly due to the distinct transcriptional coregulator recruitment by the GR. In conclusion, relacorilant is thus an efficacious peripheral GR antagonist in mice with only modest disinhibition of the HPA axis, and the distinct properties of relacorilant endorse the potential of selective GR antagonist treatment for endogenous Cushing's syndrome.


Assuntos
Síndrome de Cushing , Mifepristona , Humanos , Camundongos , Animais , Mifepristona/farmacologia , Hidrocortisona/metabolismo , Receptores de Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Leucócitos Mononucleares , Células HEK293 , Sistema Hipófise-Suprarrenal/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Dexametasona/farmacologia
6.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34791109

RESUMO

Hypoxia, a common stressor with preterm birth, increases morbidity and mortality associated with prematurity. Glucocorticoids (GCs) are administered to the preterm infant to improve oxygenation; prolonged use of GCs remains controversial. We evaluated a selective glucocorticoid receptor (GR) antagonist (CORT113176) in our neonatal rat model of human prematurity to assess how fasting and hypoxia-induced increases in neonatal corticosterone affects endogenous hormones and endocrine pancreas function. Neonatal rat pups at postnatal day (PD) 2, PD8, and PD15 were pretreated with CORT113176 and, after 60 minutes of separation and fasting, exposed to hypoxia (8% O2) or control (normoxia) for 30 or 60 minutes while fasting was continued. Plasma corticosterone, ACTH, glucose, and insulin were measured and fasting Homeostatic Model Assessment of Insulin Resistance was calculated. Glucocorticoid and insulin receptor-sensitive gene mRNAs were analyzed in liver, muscle, and adipose to evaluate target tissue biomarkers. CORT113176 pretreatment augmented baseline and hypoxia-induced increases in corticosterone and attenuated hypoxia-induced increases in insulin resistance at PD2. Normoxic and hypoxic stress increased the hepatic GR-sensitive gene mRNAs, Gilz and Per1; this was eliminated by pretreatment with CORT113176. CORT113176 pretreatment decreased baseline insulin receptor-sensitive gene mRNAs Akt2, Irs1, Pik3r1, and Srebp1c at PD2. We show that CORT113176 variably augments the stress-induced increases in corticosterone concentrations (attenuation of negative feedback) and that GR is critical for hepatic responses to stress in the hypoxic neonate. We also propose that measurement of Gilz and Per1 mRNA expression may be useful to evaluate the effectiveness of GR antagonism.


Assuntos
Corticosteroides/metabolismo , Prenhez , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Esteroides/metabolismo , Tecido Adiposo/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Glucose/metabolismo , Hormônios/metabolismo , Hipóxia , Insulina/metabolismo , Resistência à Insulina , Isoquinolinas/farmacologia , Fígado/metabolismo , Masculino , Músculos/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Pirazóis/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Clin Psychopharmacol ; 41(6): 632-637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34369902

RESUMO

PURPOSE: Antipsychotic medications, including olanzapine, are associated with substantial weight gain and metabolic disturbances. We sought to determine whether coadministration of miricorilant, a selective glucocorticoid receptor modulator, with olanzapine can ameliorate these effects. METHODS: Sixty-six healthy men were enrolled in a 2-week, randomized, double-blind, placebo-controlled trial. The primary objective was to evaluate changes in body weight after 14 days coadministration of olanzapine (10 mg) + miricorilant (600 mg) compared with olanzapine (10 mg) + placebo. Secondary objectives included evaluating (a) the safety and tolerability of the combination; (b) the effects of the combination on glucose, insulin, insulin resistance, and triglycerides; and (c) the impact of the combination on hepatic enzymes. RESULTS: Subjects administered olanzapine + miricorilant gained less weight than subjects administered olanzapine + placebo (mean weight gain on day 15, 3.91 kg vs 4.98 kg; difference between groups, -1.07 kg; 95% confidence interval, -1.94 to -0.19; P = 0.017]). Compared with the placebo group, coadministration of miricorilant with olanzapine was associated with smaller increases in insulin (difference, -3.74 mIU/L; P = 0.007), homeostatic model assessment of insulin resistance (difference, -0.47; P = 0.007), triglycerides (difference, -0.29 mmol/L; P = 0.057), aspartate aminotransferase (difference, -32.24 IU/L; P = 0.009), and alanine aminotransferase (difference, -49.99 IU/L; P = 0.030). CONCLUSIONS: Miricorilant may provide a promising option for ameliorating the detrimental effects of olanzapine, and investigation of this medication in patients affected by antipsychotic-induced weight gain is warranted. Two phase 2 studies of miricorilant in patients with recent and long-standing antipsychotic-induced weight gain are currently in progress.


Assuntos
Antipsicóticos/farmacologia , Olanzapina/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Timina/análogos & derivados , Aumento de Peso/efeitos dos fármacos , Adulto , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Olanzapina/administração & dosagem , Olanzapina/efeitos adversos , Estudo de Prova de Conceito , Timina/administração & dosagem , Timina/efeitos adversos , Timina/farmacologia , Adulto Jovem
8.
Oncotarget ; 12(13): 1243-1255, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34194622

RESUMO

BACKGROUND: Resistance to antiproliferative chemotherapies remains a significant challenge in the care of patients with solid tumors. Glucocorticoids, including endogenous cortisol, have been shown to induce pro-survival pathways in epithelial tumor cells. While pro-apoptotic effects of glucocorticoid receptor (GR) antagonism have been demonstrated under select conditions, the breadth and nature of these effects have not been fully established. MATERIALS AND METHODS: To guide studies in cancer patients, relacorilant, an investigational selective GR modulator (SGRM) that antagonizes cortisol activity, was assessed in various tumor types, with multiple cytotoxic combination partners, and in the presence of physiological cortisol concentrations. RESULTS: In the MIA PaCa-2 cell line, paclitaxel-driven apoptosis was blunted by cortisol and restored by relacorilant. In the OVCAR5 cell line, relacorilant improved the efficacy of paclitaxel and the potency of platinum agents. A screen to identify optimal combination partners for relacorilant showed that microtubule-targeted agents consistently benefited from combination with relacorilant. These findings were confirmed in xenograft models, including MIA PaCa-2, HeLa, and a cholangiocarcinoma patient-derived xenograft. In vivo, tumor-cell apoptosis was increased when relacorilant was added to paclitaxel in multiple models. CONCLUSIONS: These observations support recently reported findings of clinical benefit when relacorilant is added to paclitaxel-containing therapy in patients with ovarian and pancreatic cancers and provide a new rationale for combining relacorilant with additional cytotoxic agents.

9.
Commun Biol ; 4(1): 781, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168276

RESUMO

Investigational in vitro models that reflect the complexity of the interaction between the immune system and tumours are limited and difficult to establish. Herein, we present a platform to study the tumour-immune interaction using a co-culture between cancer spheroids and activated immune cells. An algorithm was developed for analysis of confocal images of the co-culture to evaluate the following quantitatively; immune cell infiltration, spheroid roundness and spheroid growth. As a proof of concept, the effect of the glucocorticoid stress hormone, cortisol was tested on 66CL4 co-culture model. Results were comparable to 66CL4 syngeneic in vivo mouse model undergoing psychological stress. Furthermore, administration of glucocorticoid receptor antagonists demonstrated the use of this model to determine the effect of treatments on the immune-tumour interplay. In conclusion, we provide a method of quantifying the interaction between the immune system and cancer, which can become a screening tool in immunotherapy design.


Assuntos
Técnicas de Cocultura , Neoplasias de Mama Triplo Negativas/imunologia , Algoritmos , Animais , Linhagem Celular Tumoral , Feminino , Hidrocortisona/sangue , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Glucocorticoides/antagonistas & inibidores , Esferoides Celulares , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
10.
Pharmacol Res ; 168: 105588, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798733

RESUMO

Glucocorticoids regulate numerous processes in human physiology, but deregulated or excessive glucocorticoid receptor (GR) signaling contributes to the development of various pathologies including metabolic syndrome. For this reason, GR antagonists have considerable therapeutic value. Yet, the only GR antagonist that is clinically approved to date - mifepristone - exhibits cross-reactivity with other nuclear steroid receptors like the progesterone receptor. In this study, we set out to identify novel selective GR antagonists by combining rational chemical design with an unbiased in vitro and in vivo screening approach. Using this pipeline, we were able to identify CORT125329 as the compound with the best overall profile from our octahydro series of novel GR antagonists, and demonstrated that CORT125329 does not exhibit cross-reactivity with the progesterone receptor. Further in vivo testing showed beneficial activities of CORT125329 in models for excessive corticosterone exposure and short- and long-term high-fat diet-induced metabolic complications. Upon CORT125329 treatment, most metabolic parameters that deteriorated upon high-fat diet feeding were similarly improved in male and female mice, confirming activity in both sexes. However, some sexually dimorphic effects were observed including male-specific antagonism of GR activity in brown adipose tissue and female-specific lipid lowering activities after short-term CORT125329 treatment. Remarkably, CORT125329 exhibits beneficial metabolic effects despite its lack of GR antagonism in white adipose tissue. Rather, we propose that CORT125329 treatment restores metabolic activity in brown adipose tissue by stimulating lipolysis, mitochondrial activity and thermogenic capacity. In summary, we have identified CORT125329 as a selective GR antagonist with strong beneficial activities in metabolic disease models, paving the way for further clinical investigation.


Assuntos
Doenças Metabólicas/tratamento farmacológico , Receptores de Glucocorticoides/antagonistas & inibidores , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Desenho de Fármacos , Desenvolvimento de Medicamentos , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Neuropharmacology ; 188: 108510, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647278

RESUMO

Alcohol use disorder (AUD) is associated with the dysregulation of brain stress and reward systems, including glucocorticoid receptors (GRs). The mixed glucocorticoid/progesterone receptor antagonist mifepristone and selective GR antagonist CORT113176 have been shown to selectively reduce alcohol consumption in alcohol-dependent rats. Mifepristone has also been shown to decrease alcohol consumption and craving for alcohol in humans with AUD. The present study tested the effects of the GR modulators CORT118335, CORT122928, CORT108297, and CORT125134 on alcohol self-administration in nondependent (air-exposed) and alcohol-dependent (alcohol vapor-exposed) adult male rats. Different GR modulators recruit different GR-associated transcriptional cofactors. Thus, we hypothesized that these GR modulators would vary in their effects on alcohol drinking. CORT118335, CORT122928, and CORT125134 significantly reduced alcohol self-administration in both alcohol-dependent and nondependent rats. CORT108297 had no effect on alcohol self-administration in either group. The present results support the potential of GR modulators for the development of treatments for AUD. Future studies that characterize genomic and nongenomic effects of these GR modulators will elucidate potential molecular mechanisms that underlie alcohol drinking in alcohol-dependent and nondependent states.


Assuntos
Compostos Aza/farmacologia , Etanol/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Mifepristona/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Autoadministração , Timina/análogos & derivados , Animais , Masculino , Ratos , Ratos Wistar , Timina/farmacologia
12.
J Clin Pharmacol ; 61(2): 244-253, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32869328

RESUMO

Relacorilant is a selective modulator of the glucocorticoid receptor in development for the treatment of several serious diseases. The widely used cocktail method was employed to assess relacorilant's effect on various cytochrome P450 (CYP) drug metabolizing enzymes in vitro and in vivo. Inhibition of CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2B6, CYP2C8, CYP3A4, and CYP3A5 as well as induction of CYP1A2, CYP2B6, and CYP3A4 were assessed in vitro (relacorilant concentrations up to 10 µM). A clinical study in healthy subjects (n = 27) evaluated the inhibition of CYP3A4, CYP2C8, and CYP2C9 in vivo by administering single doses of probe CYP substrates (midazolam, pioglitazone, and tolbutamide) alone and in combination with relacorilant (350 mg). Pharmacokinetic sampling was conducted, and safety was assessed throughout the study. Pharmacokinetic parameters were evaluated using 90% confidence intervals of the geometric least squares mean ratios of test (probe substrate with relacorilant) vs reference (probe substrate alone) using boundaries of 80% to 125%. In vitro, relacorilant inhibited CYP3A4, CYP2C8, and CYP2C9 but did not meaningfully affect the activity of the other CYP enzymes evaluated. Consistent with the in vitro data, relacorilant was shown to be a strong CYP3A inhibitor in vivo (>8-fold increase in midazolam area under the concentration versus time curve from time zero to the last quantifiable concentration and area under the concentration versus time curve from time zero extrapolated to infinity). Coadministration of relacorilant with drugs highly dependent on CYP3A for clearance is expected to increase the concentrations of these drugs. Importantly, clinical evaluation of relacorilant showed no inhibition of CYP2C8 or CYP2C9 in vivo. Accordingly, drugs that are substrates of only CYP2C8 and/or CYP2C9 can be coadministered with relacorilant without dose adjustment.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Isoquinolinas/farmacocinética , Pirazóis/farmacocinética , Piridinas/farmacocinética , Área Sob a Curva , Estudos Cross-Over , Relação Dose-Resposta a Droga , Interações Medicamentosas , Meia-Vida , Humanos , Midazolam/farmacologia , Pioglitazona/farmacologia , Tolbutamida/farmacologia
13.
J Pharmacol Exp Ther ; 375(2): 258-267, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873623

RESUMO

The efficacy of short-term treatment with mifepristone (MIFE), a high-affinity, nonselective glucocorticoid receptor antagonist, to reduce ethanol drinking was tested in a rhesus macaque model. Stable individual daily ethanol intakes were established, ranging from 1.6 to 4.0 g/kg per day (n = 9 monkeys). After establishment of chronic ethanol intake, a MIFE dosing regimen that modeled a study of rodent drinking and human alcohol craving was evaluated. Three doses of MIFE (17, 30, and 56 mg/kg per day) were each administered for four consecutive days. Both 30 and 56 mg/kg decreased ethanol intake compared with baseline drinking levels without a change in water intake. The dose of 56 mg/kg per day of MIFE produced the largest reduction in ethanol self-administration, with the average intake at 57% of baseline intakes. Cortisol was elevated during MIFE dosing, and a mediation analysis revealed that the effect on ethanol drinking was fully mediated through cortisol. During a forced abstinence phase, access to 1.5 g/kg ethanol resulted in relapse in all drinkers and was not altered by treatment with 56 mg/kg MIFE. Overall, these results show that during active drinking MIFE is efficacious in reducing heavy alcohol intake in a monkey model, an effect that was related to MIFE-induced increase in cortisol. However, MIFE treatment did not eliminate ethanol drinking. Further, cessation of MIFE treatment resulted in a rapid return to baseline intakes, and MIFE was not effective in preventing a relapse during early abstinence. SIGNIFICANCE STATEMENT: Mifepristone reliably decreases average daily ethanol self-administration in a nonhuman primate model. This effect was mediated by cortisol, was most effective during open-access conditions, and did not prevent or reduce relapse drinking.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Mifepristona/farmacologia , Animais , Ingestão de Líquidos/efeitos dos fármacos , Macaca mulatta , Masculino , Mifepristona/uso terapêutico , Autoadministração
14.
J Endocrinol ; 246(1): 79-92, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32369774

RESUMO

Glucocorticoids mediate numerous essential processes in the human body via binding to the glucocorticoid receptor (GR). Excessive GR signaling can cause disease, and GR antagonists can be used to treat many symptoms of glucocorticoid-induced pathology. The purpose of this study was to characterize the tissue-specific properties of the selective GR antagonist CORT125281. We evaluated the antagonistic effects of CORT125281 upon acute and subchronic corticosterone exposure in mice. In the acute corticosterone setting, hypothalamus-pituitary-adrenal-axis activity was investigated by measurement of basal- and stress-induced corticosterone levels, adrenocorticotropic hormone levels and pituitary proopiomelanocortin expression. GR signaling was evaluated by RT-PCR analysis of GR-responsive transcripts in liver, muscle, brown adipose tissue (BAT), white adipose tissue (WAT) and hippocampus. Pretreatment with a high dose of CORT125281 antagonized GR activity in a tissue-dependent manner. We observed complete inhibition of GR-induced target gene expression in the liver, partial blockade in muscle and BAT and no antagonism in WAT and hippocampus. Tissue distribution only partially explained the lack of effective antagonism. CORT125281 treatment did not disinhibit the hypothalamus-pituitary-adrenal neuroendocrine axis. In the subchronic corticosterone setting, CORT125281 partially prevented corticosterone-induced hyperinsulinemia, but not hyperlipidemia and immune suppression. In conclusion, CORT125281 antagonizes GR transcriptional activity in a tissue-dependent manner and improves corticosterone-induced hyperinsulinemia. Tailored dosing of CORT125281 may allow tissue-specific inhibition of GR transcriptional activity.


Assuntos
Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Corticosterona/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/prevenção & controle , Hiperlipidemias/metabolismo , Hiperlipidemias/prevenção & controle , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Mifepristona/farmacologia , Músculos/efeitos dos fármacos , Músculos/metabolismo
15.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244957

RESUMO

Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic-pituitary-adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine-threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Animais , Corticosterona/sangue , Corticosterona/química , Modelos Animais de Doenças , Humanos , Inflamação/sangue , Inflamação/complicações , Modelos Biológicos , Doenças Neurodegenerativas/sangue , Receptores de Glucocorticoides/antagonistas & inibidores
16.
Alcohol Clin Exp Res ; 44(5): 1025-1036, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32154593

RESUMO

BACKGROUND: Chronic alcohol exposure can alter glucocorticoid receptor (GR) function in some brain areas that promotes escalated and compulsive-like alcohol intake. GR antagonism can prevent dependence-induced escalation in drinking, but very little is known about the role of GR in regulating high-risk nondependent alcohol intake. Here, we investigate the role of GR in regulating binge-like drinking and aversive responses to alcohol in the High Drinking in the Dark (HDID-1) mice, which have been selectively bred for high blood ethanol (EtOH) concentrations (BECs) in the Drinking in the Dark (DID) test, and in their founder line, the HS/NPT. METHODS: In separate experiments, male and female HDID-1 mice were administered one of several compounds that inhibited GR or its negative regulator, FKBP51 (mifepristone [12.5, 25, 50, 100 mg/kg], CORT113176 [20, 40, 80 mg/kg], and SAFit2 [10, 20, 40 mg/kg]) during a 2-day DID task. EtOH consumption and BECs were measured. EtOH conditioned taste and place aversion (CTA and CPA, respectively) were measured in separate HDID-1 mice after mifepristone administration to assess GR's role in regulating the conditioned aversive effects of EtOH. Lastly, HS/NPT mice were administered CORT113176 during DID to assess whether dissimilar effects from those of HDID-1 would be observed, which could suggest that selective breeding had altered sensitivity to the effects of GR antagonism on binge-like drinking. RESULTS: GR antagonism (with both mifepristone and CORT113176) selectively reduced binge-like EtOH intake and BECs in the HDID-1 mice, while inhibition of FKBP51 did not alter intake or BECs. In contrast, GR antagonism had no effect on EtOH intake or BECs in the HS/NPT mice. Although HDID-1 mice exhibit attenuated EtOH CTA, mifepristone administration did not enhance the aversive effects of EtOH in either a CTA or CPA task. CONCLUSION: These data suggest that the selection process increased sensitivity to GR antagonism on EtOH intake in the HDID-1 mice, and support a role for the GR as a genetic risk factor for high-risk alcohol intake.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Etanol/administração & dosagem , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/fisiologia , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/genética , Animais , Agentes Aversivos , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/prevenção & controle , Feminino , Isoquinolinas/farmacologia , Masculino , Camundongos , Mifepristona/farmacologia , Pirazóis/farmacologia , Receptores de Glucocorticoides/genética , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores
17.
FASEB J ; 34(1): 1150-1168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914623

RESUMO

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-ß oligomers (oAß), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oAß impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAß potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing Aß and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Receptores de Glucocorticoides/metabolismo , Proteínas tau/metabolismo , Corticosteroides/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Glucocorticoides/metabolismo , Homeostase , Sistema Hipotálamo-Hipofisário , Masculino , Fosforilação , Sistema Hipófise-Suprarrenal , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
18.
Brain Res ; 1727: 146551, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726042

RESUMO

The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS). Wobbler mice also show high levels of corticosterone in blood, adrenals and brain plus adrenal hypertrophy, suggesting that chronically elevated glucocorticoids prime spinal cord neuroinflammation. Therefore, we analyzed if treatment of Wobbler mice with the glucocorticoid receptor (GR) antagonist CORT113176 mitigated the mentioned abnormalities. 30 mg/kg CORT113176 given daily for 3 weeks reduced motoneuron vacuolation, decreased astro and microgliosis, lowered the inflammatory mediators high mobility group box 1 protein (HMGB1), toll-like receptor 4, myeloid differentiation primary response 88 (MyD88), p50 subunit of nuclear factor kappa B (NFκB), tumor necrosis factor (TNF) receptor, and interleukin 18 (IL18) compared to untreated Wobblers. CORT113176 increased the survival signal pAKT (serine-threonine kinase) and decreased the death signal phosphorylated Junk-N-terminal kinase (pJNK), symptomatic of antiapoptosis. There was a moderate positive effect on glutamine synthase and astrocyte glutamate transporters, suggesting decreased glutamate excitotoxicity. In this pre-clinical study, Wobblers receiving CORT113176 showed enhanced resistance to fatigue in the rota rod test and lower forelimb atrophy at weeks 2-3. Therefore, long-term treatment with CORT113176 attenuated degeneration and inflammation, increased motor performance and decreased paw deformity. Antagonism of the GR may be of potential therapeutic value for neurodegenerative diseases.


Assuntos
Isoquinolinas/administração & dosagem , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Pirazóis/administração & dosagem , Receptores de Glucocorticoides/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Encefalite/patologia , Feminino , Ácido Glutâmico/toxicidade , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia
19.
Neuroendocrinology ; 109(3): 266-276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30884490

RESUMO

Glucocorticoid hormones have important effects on brain function in the context of acute and chronic stress. Many of these are mediated by the glucocorticoid receptor (GR). GR has transcriptional activity which is highly context-specific and differs between tissues and even between cell types. The outcome of GR-mediated transcription depends on the interactome of associated coregulators. Selective GR modulators (SGRMs) are a class of GR ligands that can be used to activate only a subset of GR-coregulator interactions, thereby giving the possibility to induce a unique combination of agonistic and antagonistic GR properties. We describe SGRM action in animal models of brain function and pathology, and argue for their utility as molecular filters, to characterize context-specific GR interactome and transcriptional activity that are responsible for particular glucocorticoid-driven effects in cognitive processes such as memory consolidation. The ultimate objective of this approach is to identify molecular processes that are responsible for adaptive and maladaptive effects of glucocorticoids in the brain.


Assuntos
Encéfalo/metabolismo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Humanos
20.
Endocrinology ; 159(12): 3925-3936, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321321

RESUMO

Medication for nonalcoholic fatty liver disease (NAFLD) is an unmet need. Glucocorticoid (GC) stress hormones drive fat metabolism in the liver, but both full blockade and full stimulation of GC signaling aggravate NAFLD pathology. We investigated the efficacy of selective glucocorticoid receptor (GR) modulator CORT118335, which recapitulates only a subset of GC actions, in reducing liver lipid accumulation in mice. Male C57BL/6J mice received a low-fat diet or high-fat diet mixed with vehicle or CORT118335. Livers were analyzed histologically and for genome-wide mRNA expression. Functionally, hepatic long-chain fatty acid (LCFA) composition was determined by gas chromatography. We determined very-low-density lipoprotein (VLDL) production by treatment with a lipoprotein lipase inhibitor after which blood was collected to isolate radiolabeled VLDL particles and apoB proteins. CORT118335 strongly prevented and reversed hepatic lipid accumulation. Liver transcriptome analysis showed increased expression of GR target genes involved in VLDL production. Accordingly, CORT118335 led to increased lipidation of VLDL particles, mimicking physiological GC action. Independent pathway analysis revealed that CORT118335 lacked induction of GC-responsive genes involved in cholesterol synthesis and LCFA uptake, which was indeed reflected in unaltered hepatic LCFA uptake in vivo. Our data thus reveal that the robust hepatic lipid-lowering effect of CORT118335 is due to a unique combination of GR-dependent stimulation of lipid (VLDL) efflux from the liver, with a lack of stimulation of GR-dependent hepatic fatty acid uptake. Our findings firmly demonstrate the potential use of CORT118335 in the treatment of NAFLD and underscore the potential of selective GR modulation in metabolic disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores de Glucocorticoides/antagonistas & inibidores , Timina/análogos & derivados , Hormônio Adrenocorticotrópico/sangue , Animais , Corticosterona/sangue , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Lipogênese/efeitos dos fármacos , Lipoproteínas VLDL/sangue , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Especificidade por Substrato , Timina/farmacologia , Timina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...