Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1362711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586454

RESUMO

Objective: Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods: Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results: Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions: Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Intestino Delgado , Ratos , Camundongos , Animais , Masculino , Feminino , Ratos Wistar , Camundongos Endogâmicos C57BL , Intestino Delgado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Dieta
2.
iScience ; 25(11): 105296, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325048

RESUMO

The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism.

3.
Mol Metab ; 66: 101639, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400402

RESUMO

OBJECTIVE: Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS: Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS: Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS: Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.


Assuntos
Glucagon , Receptores de Glucagon , Triglicerídeos , Animais , Camundongos , Acetaminofen/farmacologia , Glucagon/metabolismo , Metabolismo dos Lipídeos/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Glucagon/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 884501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600607

RESUMO

Purpose: Decreased circulating levels of food-intake-regulating gut hormones have been observed in type 2 diabetes and obesity. However, it is still unknown if this is due to decreased secretion from the gut mucosal cells or due to extra-intestinal processing of hormones. Methods: We measured intestinal hormone content and assessed morphological differences in the intestinal mucosa by histology and immunohistochemistry. Secretion of hormones and absorption of glucose and bile acids (BA) were assessed in isolated perfused mouse intestine. Results: GIP (glucose-dependent insulinotropic polypeptide) and SS (somatostatin) contents were higher in the duodenum of control mice (p < 0.001, and <0.01). Duodenal GLP-1 (glucagon-like peptide-1) content (p < 0.01) and distal ileum PYY content were higher in DIO mice (p < 0.05). Villus height in the jejunum, crypt depth, and villus height in the ileum were increased in DIO mice (p < 0.05 and p = 0.001). In the distal ileum of DIO mice, more immunoreactive GLP-1 and PYY cells were observed (p = 0.01 and 0.007). There was no difference in the absorption of glucose and bile acids. Distal secretion of SS tended to be higher in DIO mice (p < 0.058), whereas no difference was observed for the other hormones in response to glucose or bile acids. Conclusion: Our data suggest that differences regarding production and secretion are unlikely to be responsible for the altered circulating gut hormone levels in obesity, since enteroendocrine morphology and hormone secretion capacity were largely unaffected in DIO mice.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Animais , Ácidos e Sais Biliares , Dieta , Peptídeo 1 Semelhante ao Glucagon , Glucose , Mucosa Intestinal , Camundongos , Camundongos Obesos , Obesidade/etiologia
5.
J Endocr Soc ; 5(9): bvab084, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337276

RESUMO

CONTEXT: Inhibitors of the protease neprilysin (NEP) are used for treating heart failure, but are also linked to improvements in metabolism. NEP may cleave proglucagon-derived peptides, including the glucose and amino acid (AA)-regulating hormone glucagon. Studies investigating NEP inhibition on glucagon metabolism are warranted. OBJECTIVE: This work aims to investigate whether NEP inhibition increases glucagon levels. METHODS: Plasma concentrations of glucagon and AAs were measured in eight healthy men during a mixed meal with and without a single dose of the NEP inhibitor/angiotensin II type 1 receptor antagonist, sacubitril/valsartan (194 mg/206 mg). Long-term effects of sacubitril/valsartan (8 weeks) were investigated in individuals with obesity (n = 7). Mass spectrometry was used to investigate NEP-induced glucagon degradation, and the derived glucagon fragments were tested pharmacologically in cells transfected with the glucagon receptor (GCGR). Genetic deletion or pharmacological inhibition of NEP with or without concomitant GCGR antagonism was tested in mice to evaluate effects on AA metabolism. RESULTS: In healthy men, a single dose of sacubitril/valsartan significantly increased postprandial concentrations of glucagon by 228%, concomitantly lowering concentrations of AAs including glucagonotropic AAs. Eight-week sacubitril/valsartan treatment increased fasting glucagon concentrations in individuals with obesity. NEP cleaved glucagon into 5 inactive fragments (in vitro). Pharmacological NEP inhibition protected both exogenous and endogenous glucagon in mice after an AA challenge, while NEP-deficient mice showed elevated fasting and AA-stimulated plasma concentrations of glucagon and urea compared to controls. CONCLUSION: NEP cleaves glucagon, and inhibitors of NEP result in hyperglucagonemia and may increase postprandial AA catabolism without affecting glycemia.

6.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33434183

RESUMO

Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.


Assuntos
Glicemia/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Animais , Glicemia/metabolismo , Inibidores da Dipeptidil Peptidase IV/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina , Secreção de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Receptores de Somatostatina/genética
7.
Mol Metab ; 42: 101080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32937194

RESUMO

OBJECTIVE: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.


Assuntos
Aminoácidos/metabolismo , Fígado Gorduroso/fisiopatologia , Glucagon/metabolismo , Adulto , Animais , Glicemia/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucagon/fisiologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...