Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33684553

RESUMO

The olfactory epithelium of the sea catfish, Ariopsis felis, is found on a pinnate array of lamellae (the olfactory rosette) housed within a nasal chamber. The nasal anatomy of A. felis suggests an ability to capture external water currents. We prepared models from X-ray micro-computed tomography scans of two preserved specimens of A. felis. We then used dye visualisation and computational fluid dynamics to show that an external current induced a flow of water through a) the nasal chamber and b) the sensory channels of the olfactory rosette. The factors responsible for inducing flow through the nasal chamber are common to fishes from two other orders. The dye visualisation experiments, together with observations of sea catfishes in vivo, indicate that flow through the nasal chamber is regulated by a mobile nasal flap. The position of the nasal flap - elevated (significant flow) or depressed (reduced flow) - is controlled by the sea catfish's movements. Flow in the sensory channels of the olfactory rosette can pass through either a single channel or, via multiple pathways, up to four consecutive channels. Flow through consecutive sensory channels (olfactory resampling) is more extensive at lower Reynolds numbers (200 and 300, equivalent to swimming speeds of 0.5-1.0 total lengths s-1), coinciding with the mean swimming speed of the sea catfishes observed in vivo (0.6 total lengths s-1). Olfactory resampling may also occur, via a vortex, within single sensory channels. In conclusion, olfactory flow in the sea catfish is regulated and thoroughly sampled by novel mechanisms.


Assuntos
Peixes-Gato/fisiologia , Olfato/fisiologia , Animais , Modelos Anatômicos , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-31229600

RESUMO

Fluid dynamics plays an important part in olfaction. Using the complementary techniques of dye visualisation and computational fluid dynamics (CFD), we investigated the hydrodynamics of the nasal region of the sturgeon Huso dauricus. H. dauricus offers several experimental advantages, including a well-developed, well-supported, radial array (rosette) of visible-by-eye olfactory sensory channels. We represented these features in an anatomically accurate rigid model derived from an X-ray scan of the head of a preserved museum specimen. We validated the results from the CFD simulation by comparing them with data from the dye visualisation experiments. We found that flow through both the nasal chamber and, crucially, the sensory channels could be induced by an external flow (caused by swimming in vivo) at a physiologically relevant Reynolds number. Flow through the nasal chamber arises from the anatomical arrangement of the incurrent and excurrent nostrils, and is assisted by the broad, cartilage-supported, inner wall of the incurrent nostril. Flow through the sensory channels arises when relatively high speed flow passing through the incurrent nostril encounters the circular central support of the olfactory rosette, decelerates, and is dispersed amongst the sensory channels. Vortices within the olfactory flow may assist odorant transport to the sensory surfaces. We conclude that swimming alone is sufficient to drive olfactory flow in H. dauricus, and consider the implications of our results for the three other extant genera of sturgeons (Acipenser, Pseudoscaphirhynchus and Scaphirhynchus), and for other fishes with olfactory rosettes.


Assuntos
Peixes/fisiologia , Nariz/fisiologia , Odorantes , Olfato/fisiologia , Animais , Simulação por Computador , Modelos Anatômicos , Cavidade Nasal/fisiologia , Natação/fisiologia
3.
Zoology (Jena) ; 119(6): 500-510, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27449820

RESUMO

Fishes have several means of moving water to effect odorant transport to their olfactory epithelium ('olfactory flow'). Here we show that olfactory flow in the adult garpike Belone belone (Belonidae, Teleostei), a fish with an unusual nasal region, can be generated by its motion relative to water (swimming, or an external current, or both). We also show how the unusual features of the garpike's nasal region influence olfactory flow. These features comprise a triangular nasal cavity in which the olfactory epithelium is exposed to the external environment, a papilla situated within the nasal cavity, and an elongated ventral apex. To perform our investigation we first generated life-like plastic models of garpike heads from X-ray scans of preserved specimens. We then suspended these models in a flume and flowed water over them to simulate swimming. By directing filaments of dye at the static models, we were able to visualise flow in the nasal regions at physiologically relevant Reynolds numbers (700-2,000). We found that flow of water over the heads did cause circulation in the nasal cavity. Vortices may assist in this circulation. The pattern of olfactory flow was influenced by morphological variations and the asymmetry of the nasal region. The unusual features of the nasal region may improve odorant sampling in the garpike, by dispersing flow over the olfactory epithelium and by creating favourable conditions for odorant transport (e.g. steep velocity gradients). Unexpectedly, we found that the mouth and the base of the garpike's jaws may assist the sampling process. Thus, despite its apparent simplicity, the garpike's nasal region is likely to act as an effective trap for odorant molecules.


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Nariz/anatomia & histologia , Nariz/fisiologia , Animais , Cabeça , Modelos Anatômicos , Olfato , Natação , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...