Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gene Med ; 14(1): 62-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22147660

RESUMO

BACKGROUND: Enzyme prodrug gene therapy is designed as a targeted cancer treatment, destroying gene-modified and bystander cells via exogenous enzyme-generated cytotoxins. Targeting of tumour blood vessels using gene therapy is attractive, although optimal enzyme prodrug combinations have yet to be identified. METHODS: Seven enzyme prodrug combinations were ranked in two endothelial (HUVEC, HMEC-1) and one tumour cell line (T24) for their ability to reduce proliferation and viability. The ability to destroy bystander cells in two dimensions (2D) and three dimensions (3D), mode of cell kill, and the ability to disrupt vascular networks were measured. RESULTS: Endothelial cell proliferation (bromodeoxyuridine uptake) was reduced most effectively by Herpes simplex virus thymidine kinase (TK) with ganciclovir (GCV), followed by Escherichia coli nitroreductase NfsB (NTR) with CB1954; viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay] was reduced most efficiently by NTR/CB1954 followed by TK/GCV. Of the seven combinations, only NTR/CB1954 displayed measurable bystander effects in 2D monolayers, and none demonstrated bystander killing in coated spheroids, a 3D spatially distinct model with tissue-like cell density. NTR-expressing endothelial cells displayed increased apoptosis, necrosis and caspase-3 activity after CB1954 treatment. Despite good antiproliferative activity, TK/GCV was ineffective at disrupting vascular network-like structures of endothelial cells, whereas NTR/CB1954 was efficient. NTR/metronidazole and the vascular disrupting agent, combretastatin A-4 phosphate, were the only other effective agents. CONCLUSIONS: Collectively, these data demonstrate that cytotoxic rather than cytostatic activity is necessary for efficient vascular disruption in vitro, and bystander killing is not essential. We identify NTR/CB1954 and NTR/metronidazole as candidates for in vivo investigation of vascular-targeted gene therapy.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Enzimas/farmacologia , Terapia Genética/métodos , Pró-Fármacos/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Efeito Espectador/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Terapia Combinada , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Transfecção
2.
J Biomol Tech ; 21(2): 66-72, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20592869

RESUMO

Primary cells, such as HUVEC, are notoriously difficult to transfect and are susceptible to the toxic effects of transfection reagents. A transfection reagent with a high transfection efficiency and low cytotoxicity was sought to retain sufficient viability of transfected HUVEC for subsequent assays. Nine chemical transfection reagents, currently commercially available, were compared for their ability to transfect HUVEC in vitro. A plasmid expressing the enhanced GFP (EGFP) was used for transfection, followed by flow cytometry of transfected HUVEC to determine the proportion of EGFP-expressing cells as a measure of transfection efficiency. Lipofectamine 2000 and Lipofectamine LTX (Invitrogen, Carlsbad, CA, USA) gave the highest transfection efficiencies of the reagents tested. Lipofectamine LTX was identified as the optimal transfection reagent as a result of its higher transfection efficiency at shorter periods of time following transfection when cytotoxicity was limited, allowing sufficient yield of transfected HUVEC for use in subsequent assays.


Assuntos
Células Endoteliais/metabolismo , Indicadores e Reagentes/metabolismo , Kit de Reagentes para Diagnóstico , Transfecção/métodos , Veias Umbilicais/citologia , Sobrevivência Celular , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Humanos
3.
Molecules ; 14(11): 4517-45, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19924084

RESUMO

Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.


Assuntos
Terapia Genética/métodos , Pró-Fármacos/uso terapêutico , Animais , Aziridinas/uso terapêutico , Citosina Desaminase/genética , Citosina Desaminase/fisiologia , Flucitosina/uso terapêutico , Ganciclovir/uso terapêutico , Humanos , Nitrorredutases/genética , Nitrorredutases/fisiologia , Timidina Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA