Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 61(19): 8797-8810, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204441

RESUMO

While the treatment of gastrointestinal stromal tumors (GISTs) has been revolutionized by the application of targeted tyrosine kinase inhibitors capable of inhibiting KIT-driven proliferation, diverse mutations to this kinase drive resistance to established therapies. Here we describe the identification of potent pan-KIT mutant kinase inhibitors that can be dosed without being limited by the tolerability issues seen with multitargeted agents. This effort focused on identification and optimization of an existing kinase scaffold through the use of structure-based design. Starting from a series of previously reported phenoxyquinazoline and quinoline based inhibitors of the tyrosine kinase PDGFRα, potency against a diverse panel of mutant KIT driven Ba/F3 cell lines was optimized, with a particular focus on reducing activity against a KDR driven cell model in order to limit the potential for hypertension commonly seen in second and third line GIST therapies. AZD3229 demonstrates potent single digit nM growth inhibition across a broad cell panel, with good margin to KDR-driven effects. Selectivity over KDR can be rationalized predominantly by the interaction of water molecules with the protein and ligand in the active site, and its kinome selectivity is similar to the best of the approved GIST agents. This compound demonstrates excellent cross-species pharmacokinetics, shows strong pharmacodynamic inhibition of target, and is active in several in vivo models of GIST.


Assuntos
Descoberta de Drogas , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Proteínas Mutantes/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Quinazolinas/química , Quinazolinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Quinazolinas/farmacocinética , Distribuição Tecidual , Triazóis/farmacocinética , Células Tumorais Cultivadas
2.
Sci Adv ; 4(6): eaat1719, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29938225

RESUMO

Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/química , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/química , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Prev Chronic Dis ; 8(3): A69, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21477509

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States. CRC screening allows for prevention through the removal of precancerous lesions and early detection of cancer. COMMUNITY CONTEXT: Ride for Life Alaska (RFL), a nonprofit organization that raises funds to fight cancer, and the Anchorage Neighborhood Health Center (ANHC), which is Alaska's largest community health center, joined efforts to provide CRC screening and outreach to an ethnically diverse group of low-income underinsured or uninsured patients residing in and around Anchorage, Alaska. METHODS: RFL and ANHC worked with gastroenterologists, medical practices, and pathology services to contribute pro bono and reduced-fee services for CRC screening. Information to patients was distributed through signs in the clinic, flyers, and the ANHC website. OUTCOMES: CRC screening was increased in this population. During 2007-2009, there were 2,561 immunochemical fecal occult blood tests given to patients, and 1,558 were completed (61%); 24% were positive. Sixteen gastroenterologists, 4 medical practices, and 2 laboratories provided 111 follow-up colonoscopies and pathology services to patients identified through the CRC screening program who did not have other funding resources available for follow-up care. INTERPRETATION: This program provides a model for leveraging scarce screening resources by drawing on multiple partners to increase CRC screening. Recommendations for those seeking to initiate similar programs are to have memoranda of agreement in place and a clear scope of work for all participating people and organizations to avoid delays in program implementation; hire a screening care coordinator to manage patient care and collaborate with medical practices; and identify program champions who have the energy and persistence to craft such partnerships.


Assuntos
Neoplasias Colorretais/diagnóstico , Centros Comunitários de Saúde , Detecção Precoce de Câncer , Pessoas sem Cobertura de Seguro de Saúde/estatística & dados numéricos , Pobreza/estatística & dados numéricos , Idoso , Alaska/epidemiologia , Neoplasias Colorretais/prevenção & controle , Comportamento Cooperativo , Detecção Precoce de Câncer/estatística & dados numéricos , Feminino , Obtenção de Fundos , Pessoal de Saúde , Pesquisa sobre Serviços de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Organizações sem Fins Lucrativos
4.
FASEB J ; 22(6): 1649-59, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18180334

RESUMO

Local physical interactions between cells and extracellular matrix (ECM) influence directional cell motility that is critical for tissue development, wound repair, and cancer metastasis. Here we test the possibility that the precise spatial positioning of focal adhesions governs the direction in which cells spread and move. NIH 3T3 cells were cultured on circular or linear ECM islands, which were created using a microcontact printing technique and were 1 microm wide and of various lengths (1 to 8 microm) and separated by 1 to 4.5 microm wide nonadhesive barrier regions. Cells could be driven proactively to spread and move in particular directions by altering either the interisland spacing or the shape of similar-sized ECM islands. Immunofluorescence microscopy confirmed that focal adhesions assembled preferentially above the ECM islands, with the greatest staining intensity being observed at adhesion sites along the cell periphery. Rac-FRET analysis of living cells revealed that Rac became activated within 2 min after peripheral membrane extensions adhered to new ECM islands, and this activation wave propagated outward in an oriented manner as the cells spread from island to island. A computational model, which incorporates that cells preferentially protrude membrane processes from regions near newly formed focal adhesion contacts, could predict with high accuracy the effects of six different arrangements of micropatterned ECM islands on directional cell spreading. Taken together, these results suggest that physical properties of the ECM may influence directional cell movement by dictating where cells will form new focal adhesions and activate Rac and, hence, govern where new membrane protrusions will form.


Assuntos
Movimento Celular , Adesões Focais , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Extensões da Superfície Celular/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Camundongos , Células NIH 3T3
5.
Biomed Microdevices ; 8(4): 299-308, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17003962

RESUMO

This paper describes a miniaturized, integrated, microfluidic device that can pull molecules and living cells bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient, and thus selectively remove them from flowing biological fluids without any wash steps. To accomplish this, a microfabricated high-gradient magnetic field concentrator (HGMC) was integrated at one side of a microfluidic channel with two inlets and outlets. When magnetic micro- or nano-particles were introduced into one flow path, they remained limited to that flow stream. In contrast, when the HGMC was magnetized, the magnetic beads were efficiently pulled from the initial flow path into the collection stream, thereby cleansing the original fluid. Using this microdevice, living E. coli bacteria bound to magnetic nanoparticles were efficiently removed from flowing solutions containing densities of red blood cells similar to that found in blood. Because this microdevice allows large numbers of beads and cells to be sorted simultaneously, has no capacity limit, and does not lose separation efficiency as particles are removed, it may be especially useful for separations from blood or other clinical samples. This on-chip HGMC-microfluidic separator technology may potentially allow cell separations to be carried out in the field outside of hospitals and clinical laboratories.


Assuntos
Escherichia coli/citologia , Microfluídica , Nanopartículas , Separação Celular/instrumentação , Separação Celular/métodos , Magnetismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentação , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...