Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 505: 110-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956923

RESUMO

The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.


Assuntos
Drosophila melanogaster , Pseudópodes , Animais , Pseudópodes/metabolismo , Drosophila melanogaster/metabolismo , Miosinas , Drosophila/metabolismo , Transdução de Sinais
2.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461640

RESUMO

The self-organization of cells during development is essential for the formation of healthy tissues, and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV is present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.

3.
Adv Exp Med Biol ; 1227: 51-68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32072498

RESUMO

The Notch signaling pathway seems deceptively simple, with its key feature being a direct connection between extracellular signal and transcriptional output without the need for an extended chain of protein intermediaries as required by so many other signaling paradigms. However, this apparent simplicity hides considerable complexity. Consistent with its central role in many aspects of development, Notch signaling has an extensive collection of mechanisms that it employs alongside of its core transcriptional machinery. These so-called noncanonical Notch pathways diversify the potential outputs of Notch, and allow it to coordinate regulation of many aspects of the biology of cells. Here we will review noncanonical Notch signaling with special attention to the role of posttranslational modifications of Notch. We will also consider the importance of coordinating the activity of gene expression with regulation of cell morphology in biological processes, including axon guidance and other morphological events during embryogenesis.


Assuntos
Proteólise , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Desenvolvimento Embrionário , Humanos , Fosforilação
4.
BMC Biol ; 17(1): 12, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744634

RESUMO

BACKGROUND: Notch-Delta signaling functions across a wide array of animal systems to break symmetry in a sheet of undifferentiated cells and generate cells with different fates, a process known as lateral inhibition. Unlike many other signaling systems, however, since both the ligand and receptor are transmembrane proteins, the activation of Notch by Delta depends strictly on cell-cell contact. Furthermore, the binding of the ligand to the receptor may not be sufficient to induce signaling, since recent work in cell culture suggests that ligand-induced Notch signaling also requires a mechanical pulling force. This tension exposes a cleavage site in Notch that, when cut, activates signaling. Although it is not known if mechanical tension contributes to signaling in vivo, others have suggested that this is how endocytosis of the receptor-ligand complex contributes to the cleavage and activation of Notch. In a similar way, since Notch-mediated lateral inhibition at a distance in the dorsal thorax of the pupal fly is mediated via actin-rich protrusions, it is possible that cytoskeletal forces generated by networks of filamentous actin and non-muscle myosin during cycles of protrusion extension and retraction also contribute to Notch signaling. RESULTS: To test this hypothesis, we carried out a detailed analysis of the role of myosin II-dependent tension in Notch signaling in the developing fly and in cell culture. Using dynamic fluorescence-based reporters of Notch, we found that myosin II is important for signaling in signal sending and receiving cells in both systems-as expected if myosin II-dependent tension across the Notch-Delta complex contributes to Notch activation. While myosin II was found to contribute most to signaling at a distance, it was also required for maximal signaling between adjacent cells that share lateral contacts and for signaling between cells in culture. CONCLUSIONS: Together these results reveal a previously unappreciated role for non-muscle myosin II contractility in Notch signaling, providing further support for the idea that force contributes to the cleavage and activation of Notch in the context of ligand-dependent signaling, and a new paradigm for actomyosin-based mechanosensation.


Assuntos
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Endocitose/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo
5.
J R Soc Interface ; 13(124)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27807273

RESUMO

Tissue organization and patterning are critical during development when genetically identical cells take on different fates. Lateral signalling plays an important role in this process by helping to generate self-organized spatial patterns in an otherwise uniform collection of cells. Recent data suggest that lateral signalling can be mediated both by junctional contacts between neighbouring cells and via cellular protrusions that allow non-neighbouring cells to interact with one another at a distance. However, it remains unclear precisely how signalling mediated by these distinct types of cell-cell contact can physically contribute to the generation of complex patterns without the assistance of diffusible morphogens or pre-patterns. To explore this question, in this work we develop a model of lateral signalling based on a single receptor/ligand pair as exemplified by Notch and Delta. We show that allowing the signalling kinetics to differ at junctional versus protrusion-mediated contacts, an assumption inspired by recent data which show that the cleavage of Notch in several systems requires both Delta binding and the application of mechanical force, permits individual cells to act to promote both lateral activation and lateral inhibition. Strikingly, under this model, in which Delta can sequester Notch, a variety of patterns resembling those typical of reaction-diffusion systems is observed, together with more unusual patterns that arise when we consider changes in signalling kinetics, and in the length and distribution of protrusions. Importantly, these patterns are self-organizing-so that local interactions drive tissue-scale patterning. Together, these data show that protrusions can, in principle, generate different types of patterns in addition to contributing to long-range signalling and to pattern refinement.


Assuntos
Comunicação Celular/fisiologia , Estruturas da Membrana Celular/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo
6.
Development ; 143(13): 2305-10, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226324

RESUMO

Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning.


Assuntos
Padronização Corporal , Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Drosophila melanogaster/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Órgãos dos Sentidos/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo , Vibrissas/citologia , Vibrissas/embriologia
7.
J R Soc Interface ; 11(99)2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25079866

RESUMO

Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly.


Assuntos
Algoritmos , Modelos Biológicos , Reconhecimento Visual de Modelos/fisiologia , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Estimulação Luminosa , Sensilas/ultraestrutura
8.
Development ; 141(2): 325-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24306105

RESUMO

We demonstrate that ion channels contribute to the regulation of dorsal closure in Drosophila, a model system for cell sheet morphogenesis. We find that Ca(2+) is sufficient to cause cell contraction in dorsal closure tissues, as UV-mediated release of caged Ca(2+) leads to cell contraction. Furthermore, endogenous Ca(2+) fluxes correlate with cell contraction in the amnioserosa during closure, whereas the chelation of Ca(2+) slows closure. Microinjection of high concentrations of the peptide GsMTx4, which is a specific modulator of mechanically gated ion channel function, causes increases in cytoplasmic free Ca(2+) and actomyosin contractility and, in the long term, blocks closure in a dose-dependent manner. We identify two channel subunits, ripped pocket and dtrpA1 (TrpA1), that play a role in closure and other morphogenetic events. Blocking channels leads to defects in force generation via failure of actomyosin structures, and impairs the ability of tissues to regulate forces in response to laser microsurgery. Our results point to a key role for ion channels in closure, and suggest a mechanism for the coordination of force-producing cell behaviors across the embryo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Canais Iônicos/metabolismo , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos , Cálcio/metabolismo , Quelantes/farmacologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Morfogênese , Mutação , Peptídeos/farmacologia , Canais de Sódio/metabolismo , Venenos de Aranha/farmacologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo
9.
Toxicol Sci ; 106(1): 193-205, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18660518

RESUMO

We have used zebrafish and 3,3',4,4',5-pentachlorobiphenyl (PCB126) to investigate the developmental toxicity of polychlorinated biphenyls (PCBs) that exert their effects through the aryl hydrocarbon receptor (AHR). We found that cardiac and neural crest (NC)-derived jaw and branchial cartilages are specifically targeted early in development. The suite of malformations, which ultimately leads to circulatory failure, includes a severely dysmorphic heart with a reduced bulbus arteriosus and abnormal atrioventricular and outflow valve formation. Early NC migration and patterning of the jaw and branchial cartilages was normal. However, the jaw and branchial cartilages failed to grow to normal size. In the heart, the ventricular myocardium showed a reduction in cell number and size. The heart and jaw/branchial phenotype could be rescued by pifithrin-alpha, a blocker of p53. However, the function of pifithrin-alpha in this model may act as a competitive inhibitor of PCB at the AHR and is likely independent of p53. Morpholinos against p53 did not rescue the phenotype, nor were zebrafish with a mutant p53-null allele resistant to PCB126 toxicity. Morpholino knockdown of cardiac troponin T, which blocks the onset of cardiac function, prevented the PCB126-induced cardiac dysmorphogenesis but not the jaw/branchial phenotype. The cardiovascular characteristics appear to be similar to hypoplastic left heart syndrome (HLHS) and introduce the potential of zebrafish as a model to study this environmentally induced cardiovascular malformation. HLHS is a severe congenital cardiovascular malformation that has previously been linked to industrial releases of dioxins and PCBs.


Assuntos
Anormalidades Múltiplas/induzido quimicamente , Região Branquial/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Cardiopatias Congênitas/induzido quimicamente , Ventrículos do Coração/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Peixe-Zebra/embriologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/prevenção & controle , Animais , Animais Geneticamente Modificados , Benzotiazóis/farmacologia , Padronização Corporal/efeitos dos fármacos , Região Branquial/metabolismo , Morte Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/prevenção & controle , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Anormalidades Maxilomandibulares/induzido quimicamente , Morfolinas/metabolismo , Oligonucleotídeos/metabolismo , Fenótipo , Fatores de Tempo , Tolueno/análogos & derivados , Tolueno/farmacologia , Troponina T/genética , Troponina T/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...