Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36829767

RESUMO

Inlet boundary conditions (BC) are one of the uncertainties which may influence the prediction of flow field and hemolysis in blood pumps. This study investigated the influence of inlet BC, including the length of inlet pipe, type of inlet BC (mass flow rate or experimental velocity profile) and turbulent intensity (no perturbation, 5%, 10%, 20%) on the prediction of flow field and hemolysis of a benchmark centrifugal blood pump (the FDA blood pump) and a commercial axial blood pump (Heartmate II), using large-eddy simulation. The results show that the influence of boundary conditions on integral pump performance metrics, including pressure head and hemolysis, is negligible. The influence on local flow structures, such as velocity distributions, mainly existed in the inlet. For the centrifugal FDA blood pump, the influence of type of inlet BC and inlet position on velocity distributions can also be observed at the diffuser. Overall, the effects of position of inlet and type of inlet BC need to be considered if local flow structures are the focus, while the influence of turbulent intensity is negligible and need not be accounted for during numerical simulations of blood pumps.

2.
Artif Organs ; 46(9): 1804-1816, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35436356

RESUMO

BACKGROUND: Computational fluid dynamics has been widely used to assist the design and evaluation of blood pumps. Discretization errors associated with computational grid may influence the credibility of numerical simulations. Non-conformal grid interfaces commonly exist in rotary machines, including rotary blood pumps. Should grid size across the interface differ greatly, large errors may occur. METHODS: This study explored the effects of non-conformal grid interface on the prediction of the flow field and hemolysis in blood pumps using large eddy simulation (LES). Two benchmarks, a nozzle model and a centrifugal blood pump were chosen as test cases. RESULTS: This study found that non-conformal grid interfaces with considerable change of grid sizes led to discontinuities of flow variables and brought errors to metrics such as pressure head (7%) and hemolysis (up to 14%). CONCLUSIONS: The results on the full unstructured grid are more accurate with negligible changes of flow variables across the non-conformal grid interface. A full unstructured grid should be employed for centrifugal blood pumps to minimize the influence of non-conformal grid interfaces for LES simulations.


Assuntos
Coração Auxiliar , Hemólise , Simulação por Computador , Coração Auxiliar/efeitos adversos , Humanos , Hidrodinâmica
3.
Int J Artif Organs ; 44(11): 887-899, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474617

RESUMO

An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier-Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps. Nonetheless, LES has not been widely used to assist in the design and optimization of blood pumps to date due to its formidable computational cost. The purpose of this study is to explore the potential of the LES technique as a fast and accurate engineering approach for the simulation of rotary blood pumps. The performance of "Light LES" (using the same time and spatial resolutions as the URANS) and LES in two rotary blood pumps was evaluated by comparing the results with the URANS and extensive experimental results. This study showed that the results of both "Light LES" and LES are superior to URANS, in terms of both performance curves and key flow features. URANS could not predict the flow separation and recirculation in diffusers for both pumps. In contrast, LES is superior to URANS in capturing these flows, performing well for both design and off-design conditions. The differences between the "Light LES" and LES results were relatively small. This study shows that with less computational cost than URANS, "Light LES" can be considered as a cost-effective engineering approach to assist in the design and optimization of rotary blood pumps.


Assuntos
Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...