Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530423

RESUMO

The super-resolution method has been widely used for improving azimuth resolution for radar forward-looking imaging. Typically, it can be achieved by solving an undifferentiable L1 regularization problem. The split Bregman algorithm (SBA) is a great tool for solving this undifferentiable problem. However, its real-time imaging ability is limited to matrix inversion and iterations. Although previous studies have used the special structure of the coefficient matrix to reduce the computational complexity of each iteration, the real-time performance is still limited due to the need for hundreds of iterations. In this paper, a superfast SBA (SFSBA) is proposed to overcome this shortcoming. Firstly, the super-resolution problem is transmitted into an L1 regularization problem in the framework of regularization. Then, the proposed SFSBA is used to solve the nondifferentiable L1 regularization problem. Different from the traditional SBA, the proposed SFSBA utilizes the low displacement rank features of Toplitz matrix, along with the Gohberg-Semencul (GS) representation to realize fast inversion of the coefficient matrix, reducing the computational complexity of each iteration from O(N3) to O(N2). It uses a two-order vector extrapolation strategy to reduce the number of iterations. The convergence speed is increased by about 8 times. Finally, the simulation and real data processing results demonstrate that the proposed SFSBA can effectively improve the azimuth resolution of radar forward-looking imaging, and its performance is only slightly lower compared to traditional SBA. The hardware test shows that the computational efficiency of the proposed SFSBA is much higher than that of other traditional super-resolution methods, which would meet the real-time requirements in practice.

2.
Sensors (Basel) ; 19(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986923

RESUMO

Maritime moving target detection and tracking through particle filter based track-before-detect (PF-TBD) has significant practical value for airborne forward-looking scanning radar. However, villainous weather and surging of ocean waves make it extremely difficult to accurately obtain a statistical model for sea clutter. As the likelihood ratio calculation in PF-TBD is dependent on the distribution of the clutter, the performance of traditional distribution-based PF-TBD seriously declines. To resolve these difficulties, this paper proposes a new target detection and tracking method, named spectral-residual-binary-entropy-based PF-TBD (SRBE-PF-TBD), which is independent from the prior knowledge of sea clutter. In the proposed method, the likelihood ratio calculation is implemented by first extracting the spectral residual of the input image to obtain the saliency map, and then constructing likelihood ratio through a binarization processing and information entropy calculation. Simulation results show that the proposed method had superior performance of maritime moving target detection and tracking.

3.
Sensors (Basel) ; 18(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308993

RESUMO

Finding out interested targets from synthetic aperture radar (SAR) imagery is an attractive but challenging problem in SAR application. Traditional target detection is independent on SAR imaging process, which is purposeless and unnecessary. Hence, a new SAR processing approach for simultaneous target detection and image formation is proposed in this paper. This approach is based on SAR imagery formation in time domain and human visual saliency detection. First, a series of sub-aperture SAR images with resolutions from low to high are generated by the time domain SAR imaging method. Then, those multiresolution SAR images are detected by the visual saliency processing, and the corresponding intermediate saliency maps are obtained. The saliency maps are accumulated until the result with a sufficient confidence level. After some screening operations, the target regions on the imaging scene are located, and only these regions are focused with full aperture integration. Finally, we can get the SAR imagery with high-resolution detected target regions but low-resolution clutter background. Experimental results have shown the superiority of the proposed approach for simultaneous target detection and image formation.

4.
Sensors (Basel) ; 18(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652863

RESUMO

Ship detection from synthetic aperture radar (SAR) images is one of the crucial issues in maritime surveillance. However, due to the varying ocean waves and the strong echo of the sea surface, it is very difficult to detect ships from heterogeneous and strong clutter backgrounds. In this paper, an innovative ship detection method is proposed to effectively distinguish the vessels from complex backgrounds from a SAR image. First, the input SAR image is pre-screened by the maximally-stable extremal region (MSER) method, which can obtain the ship candidate regions with low computational complexity. Then, the proposed local contrast variance weighted information entropy (LCVWIE) is adopted to evaluate the complexity of those candidate regions and the dissimilarity between the candidate regions with their neighborhoods. Finally, the LCVWIE values of the candidate regions are compared with an adaptive threshold to obtain the final detection result. Experimental results based on measured ocean SAR images have shown that the proposed method can obtain stable detection performance both in strong clutter and heterogeneous backgrounds. Meanwhile, it has a low computational complexity compared with some existing detection methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...