Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(15): 153601, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095635

RESUMO

Intensity squeezing-i.e., photon number fluctuations below the shot-noise limit-is a fundamental aspect of quantum optics and has wide applications in quantum metrology. It was predicted in 1979 that intensity squeezing could be observed in resonance fluorescence from a two-level quantum system. However, its experimental observation in solid states was hindered by inefficiencies in generating, collecting, and detecting resonance fluorescence. Here, we report the intensity squeezing in a single-mode fiber-coupled resonance fluorescence single-photon source based on a quantum dot-micropillar system. We detect pulsed single-photon streams with 22.6% system efficiency, which show sub-shot-noise intensity fluctuation with an intensity squeezing of 0.59 dB. We estimate a corrected squeezing of 3.29 dB at the first lens. The observed intensity squeezing provides the last piece of the fundamental picture of resonance fluorescence, which can be used as a new standard for optical radiation and in scalable quantum metrology with indistinguishable single photons.

2.
Phys Rev Lett ; 122(11): 113602, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951338

RESUMO

An outstanding goal in quantum optics and scalable photonic quantum technology is to develop a source that each time emits one and only one entangled photon pair with simultaneously high entanglement fidelity, extraction efficiency, and photon indistinguishability. By coherent two-photon excitation of a single InGaAs quantum dot coupled to a circular Bragg grating bull's-eye cavity with a broadband high Purcell factor of up to 11.3, we generate entangled photon pairs with a state fidelity of 0.90(1), pair generation rate of 0.59(1), pair extraction efficiency of 0.62(6), and photon indistinguishability of 0.90(1) simultaneously. Our work will open up many applications in high-efficiency multiphoton experiments and solid-state quantum repeaters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...