Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cancer Lett ; 603: 217213, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244006

RESUMO

Nerve invasion (NI) is a characteristic feature of pancreatic cancer. Traditional dichotomous statements on the presence of NI are unreasonable because almost all cases exhibit NI when sufficient pathological sections are examined. The critical implications of NI in pancreatic cancer highlight the need for a more effective criterion. This study included 511 patients, who were categorized into a training group and a testing group at a ratio of 7:3. According to the traditional definition, NI was observed in 91.2 % of patients using five pathological slides in our study. The prevalence of NI increased as more pathological slides were used. The criterion of 'two points of intraneural (endoneural) invasion in the case of four pathological slides' has the highest receiver operating characteristic (ROC) score. Based on this new criterion, NI was proved to be an independent prognostic factor for overall survival (OS) and disease-free survival (DFS) and was also correlated with tumor recurrence (P = 0.004). Interestingly, gemcitabine-based chemotherapy regimen is an independent favorable factor for patients with high NI. In the high NI group, patients who received a gemcitabine-based regimen exhibited a better prognosis than those who did not receive the gemcitabine-based regimen for OS (P = 0.000) and DFS (P = 0.001). In conclusion, this study establishes assessment criteria to evaluate the severity of NI in order to predict patient outcomes.

2.
Cancer Lett ; 598: 217130, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39089666

RESUMO

PURPOSE: Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN: The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS: AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS: Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Colesterol , Homeostase , Neoplasias Pancreáticas , Humanos , Colesterol/metabolismo , Colesterol/biossíntese , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Prognóstico , Caveolina 1/genética , Caveolina 1/metabolismo , Camundongos Nus , Masculino
3.
Cell Rep ; 43(8): 114633, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154343

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator. Elevated CLIC1 expression, induced by matrix stiffness through Wnt/ß-catenin/TCF4 signaling, signifies poorer prognostic outcomes in PDAC. Functionally, CLIC1 serves as a catalyst for glycolytic metabolism, propelling tumor proliferation. Mechanistically, CLIC1 fortifies HIF1α stability by curbing hydroxylation via reactive oxygen species (ROS). Collectively, PDAC cells elevate CLIC1 levels in a matrix-stiffness-responsive manner, bolstering the Warburg effect to drive tumor growth via ROS/HIF1α signaling. Our insights highlight opportunities for targeted therapies that concurrently address matrix properties and metabolic rewiring, with CLIC1 emerging as a promising intervention point.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Canais de Cloreto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas , Efeito Warburg em Oncologia , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Linhagem Celular Tumoral , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Espécies Reativas de Oxigênio/metabolismo , Glicólise , Camundongos Nus , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica
4.
Cancer Cell Int ; 24(1): 262, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048994

RESUMO

BACKGROUND: This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS: LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS: LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS: Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.

5.
Gene ; 927: 148735, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38944166

RESUMO

BACKGROUND: OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS: The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS: OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS: In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.


Assuntos
Proteínas de Neoplasias , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
6.
Research (Wash D C) ; 7: 0300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314086

RESUMO

Ferroptosis, a nonapoptotic form of cell death, is an emerging potential therapeutic target for various diseases, including cancer. However, the role of ferroptosis in pancreatic cancer remains poorly understood. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor prognosis and chemotherapy resistance, attributed to its high Kirsten rats arcomaviral oncogene homolog mutation rate and severe nutritional deficits resulting from a dense stroma. Several studies have linked rat sarcoma (RAS) mutations to ferroptosis, suggesting that inducing ferroptosis may be an effective strategy against oncogenic RAS-bearing tumors. We investigated the role of Family With Sequence Similarity 60 Member A (FAM60A) in this study, a protein closely associated with a poor prognosis and highly expressed in PDAC and tumor tissue from KrasG12D/+;Trp53R172H/+; Pdx1-Cre mice, in regulating ferroptosis, tumor growth, and gemcitabine sensitivity in vitro and in vivo. Our results demonstrate that FAM60A regulates 3 essential metabolic enzymes, ACSL1/4 and GPX4, to protect PDAC cells from ferroptosis. Furthermore, we found that YY1 transcriptionally regulates FAM60A expression by promoting its transcription, and the Hippo-YY1 pathway is restricted in the low-amino-acid milieu in the context of nutrient deprivation, leading to downstream suppression of peroxisome proliferator-activated receptor and ACSL1/4 and activation of GPX4 pathways. Importantly, FAM60A knockdown sensitized PDAC cells to gemcitabine treatment. A new understanding of FAM60A transcriptional regulation pattern in PDAC and its dual function in ferroptosis reliever and chemotherapy resistance is provided by our study. Targeting FAM60A may therefore offer a promising therapeutic approach for PDAC by simultaneously addressing 2 major features of the disease (high RAS mutation rate and tumor microenvironment nutrient deficiency) and preventing tumor cell metabolic adaptation.

7.
Heliyon ; 10(1): e22774, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226253

RESUMO

Objective: Cholangiocarcinoma (CHOL) is a malignant disease that affects the digestive tract, and it is characterized by a poor prognosis. This research sought to explore the involvement of cuproptosis-related lncRNAs (CRLs) in the prognostic prediction and immune infiltration of cholangiocarcinoma. Methods: The expression profiles and clinical data of CHOL patients were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and CRLs were defined via co-expression analysis. Two molecular clusters distinguished by cuproptosis-related genes (CRGs) were produced. Then a risk signature consisted by four CRLs was formed, and all samples were separated into low- and high-risk groups using a risk score. Kaplan-Meier survival analysis, principal component analysis, differentially expressed analysis, immune cell infiltration analysis, and sensitivities analysis of chemotherapy drugs were conducted between the two groups. Simultaneously, the expression values of four lncRNAs confirmed by real-time PCR in our own 20 CHOL samples were brought into the risk model. Results: The CHOL samples could be differentiated into two molecular clusters, which displayed contrasting survival times. Additionally, patients with higher risk scores had significantly worse prognosis compared to those in the low-risk group. Furthermore, both immune infiltration and enrichment analysis revealed significant discrepancies in the tumor immune microenvironment (TIME) between different risk groups. Moreover, the predictive power and the correlation with CA19-9 and CEA of risk signature were validated in our own samples. Conclusion: We developed a risk signature which could serve as an independent prognostic factor and offer a promising prediction for not only prognosis but also TIME in CHOL patients.

8.
Eur J Nucl Med Mol Imaging ; 50(13): 3961-3969, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37535107

RESUMO

BACKGROUND: [68Ga]Ga-FAPI-04 (gallium-68-labeled fibroblast activation protein inhibitor-04) PET/CT has been widely used in diagnosing malignant tumors. Total-body PET/CT has a long axial field of view and provides higher sensitivity compared to traditional PET/CT. However, whether the reduced injected dose of [68Ga]Ga-FAPI-04 could obtain qualified imaging has not been evaluated. PURPOSE: To explore the effect of half-dose [68Ga]Ga-FAPI-04 on image quality and tumor detectability in oncology patients. METHODS: A total of twenty-seven patients with tumors or clinically suspected tumors were included, and all patients were scanned with total-body PET/CT after an injected dose of 0.84-1.14 MBq/kg [68Ga]Ga-FAPI-04. All patients obtained superior image quality with 300 s original acquisition time. Images were reconstructed using 180 s, 120 s, 60 s, 40 s, 30 s, 20 s scanning duration by ordered subset expectation maximization algorithm. The subjective image quality of all patients in each time group was scored using 5-point Likert scale. Mediastinal blood pool, liver, spleen, and muscle were analyzed as background using semi-quantitative parameters maximum standardized uptake values (SUVmax), mean standardized uptake values (SUVmean), standard deviation (SD), and signal to noise ratio (SNR). The lesion detection rate, SUVmax, and tumor-to-background ratio (TBR) were calculated for tumors confirmed by pathology. RESULTS: The subjective image quality score decreased with the shortening of scanning time; however, both 180 s and 120 s images met the diagnostic requirements in terms of overall quality, lesion conspicuity, and image noise. The SUVmax of background increased with the reduction of scanning time, while the SUVmean was relatively stable. With the shortening of scanning time, the SD gradually increased, and the SNR gradually decreased, which was consistent with subjective image quality scores. In 180 s and 120 s images, all 11 primary lesions and 79 metastatic lesions were detected. The SUVmax of tumor focus showed an increasing trend as same as the background. Compared with 300 s, the TBR muscle had no statistical difference in 180 s and 120 s. CONCLUSIONS: Half-dose [68Ga]Ga-FAPI-04 in total-body PET/CT imaging can shorten the acquisition time to 120 s with acceptable subjective image quality and 100% tumor detection rate. Total-body PET/CT imaging with a half-dose [68Ga]Ga-FAPI-04 and reduced acquisition time can be used in radiation-sensitive and poor tolerant to prolong horizontal positioning and waiting time populations such as children and gravidas.


Assuntos
Neoplasias , Quinolinas , Criança , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos de Viabilidade , Radioisótopos de Gálio , Neoplasias/diagnóstico por imagem , Fluordesoxiglucose F18
9.
Apoptosis ; 28(7-8): 1090-1112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079192

RESUMO

Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.


Assuntos
Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Apoptose/genética , Neoplasias Pancreáticas/genética , Morte Celular , Microambiente Tumoral/genética , Neoplasias Pancreáticas
10.
J Nucl Med ; 64(6): 960-967, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604180

RESUMO

Fibroblast activation protein inhibitor (FAPI) is an ideal diagnostic and therapeutic target in malignant tumors. However, the knowledge of kinetic modeling and parametric imaging of 68Ga-FAPI is limited. Purpose: The purpose of this study was to explore the pharmacokinetics of 68Ga-FAPI-04 PET/CT in pancreatic cancer and gastric cancer and to conduct parametric imaging of dynamic total-body data compared with SUV imaging. Methods: Dynamic total-body 68Ga-FAPI-04 PET/CT was performed on 13 patients. The lesion time-activity curves were fitted by 3-compartment models and multigraphical models. The kinetics parameters derived from the 2-tissue reversible compartment model (2T4K) and multigraphical models were analyzed. Parametric [Formula: see text] imaging was generated using the 2T4K and Logan models, and their performances were evaluated compared with SUV images. Results: 2T4K had the lowest Akaike information criterion value, and its fitting curves matched excellently with the origin time-activity curves. Visual assessment revealed that the [Formula: see text](2T4K) images and [Formula: see text](Logan with spatial constraint [SC]) images both showed less image noise and higher lesion conspicuity compared with SUV images. Objective image quality assessment demonstrated that parametric [Formula: see text](2T4K) images and parametric [Formula: see text](Logan with SC) images had a 5.0-fold and 5.0-fold higher average signal-to-noise ratio and 3.6-fold and 4.1-fold higher average contrast-to-noise ratio compared with conventional SUV images, respectively. In addition, no significant differences in signal-to-noise ratio and contrast-to-noise of pathologic lesions were observed between parametric [Formula: see text](2T4K) images and parametric [Formula: see text](Logan with SC) images (all P > 0.05). Conclusions: The 2T4K model was the preferred compartment model. Total-body parametric imaging of 68Ga-FAPI-04 PET yielded superior quantification beyond SUV with enhanced lesion contrast, which may serve as a promising imaging method to make an early diagnosis, to better reflect tumor characterization, or to allow evaluation of treatment response. [Formula: see text](2T4K) images are comparable in image quality and consistent to [Formula: see text](Logan with SC) images in lesions conspicuity; however, [Formula: see text](Logan with SC) images presented an appealing alternative to [Formula: see text](2T4K) images because of their simplicity.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas , Humanos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Gálio , Neoplasias Gástricas/diagnóstico por imagem , Fluordesoxiglucose F18
11.
Hepatobiliary Pancreat Dis Int ; 22(2): 169-178, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35508435

RESUMO

BACKGROUND: ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS: We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS: Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS: ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Neoplasias Pancreáticas
12.
Cell Oncol (Dordr) ; 46(1): 17-48, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367669

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Neoplasias Pancreáticas/patologia , Imunoterapia/métodos , Carcinoma Ductal Pancreático/patologia , Terapia de Imunossupressão , Neoplasias Pancreáticas
13.
Clin Transl Med ; 12(12): e1126, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36495123

RESUMO

BACKGROUND: Both autophagy and glycolysis are essential for pancreatic ductal adenocarcinoma (PDAC) survival due to desmoplasia. We investigated whether targeting a hub gene which participates in both processes could be an efficient strategy for PDAC treatment. METHODS: The expression pattern of glycolysis signatures (GS) and autophagy signatures (AS) and their correlation with cystatin B (CSTB) in PDAC were analysed. It was discovered how CSTB affected the growth, glycolysis, and autophagy of PDAC cells. We assessed competitive binding to cathepsin B (CTSB) between CSTB and cystatin C (CSTC) via immunoprecipitation (IP) and immunofluorescence (IF). Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays were used to unveil the mechanism underlying CSTB upregulation. The expression pattern of CSTB was examined in clinical samples and KrasG12D/+, Trp53R172H/+, Pdx1-Cre (KPC) mice. RESULTS: GS and AS were enriched and closely associated in PDAC tissues. CSTB increased autophagic flux and provided substrates for glycolysis. CSTB knockdown attenuated the proliferation of PDAC cells and patient-derived xenografts. The liquid chromatography-tandem mass spectrometry assay indicated CSTB interacted with CTSB and contributed to the proteolytic activity of CTSB in lysosomes. IF and IP assays demonstrated that CSTB competed with CSTC to bind to CTSB. Mutation of the key sites of CSTB abolished the interaction between CSTB and CTSB. CSTB was highly expressed in PDAC due to H3K27acetylation and SP1 expression. High expression of CSTB in PDAC was observed in tissue microarray and patients' serum samples. CONCLUSIONS: Our work demonstrated the tumorigenic roles of autophagy and glycolysis in PDAC. CSTB is a key role in orchestrating these processes to ensure energy supply of PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Cistatina B/genética , Cistatina B/metabolismo , Catepsina B/genética , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Autofagia/genética , Neoplasias Pancreáticas
14.
Front Immunol ; 13: 983116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341459

RESUMO

Connexins are membrane expressed proteins, which could assemble into hexamers to transfer metabolites and secondary messengers. However, its roles in pancreatic cancer metastasis remains unknown. In this study, by comparing the gene expression patterns in primary pancreatic cancer patients primary and liver metastasis specimens, we found that Gap Junction Protein Beta 3 (GJB3) significantly increased in Pancreatic ductal adenocarcinoma (PDAC) liver metastasis. Animal experiments verified that GJB3 depletion suppressed the hepatic metastasis of PDAC cancer cells. Further, GJB3 over expression increased the neutrophil infiltration. Mechanistic study revealed that GJB3 form channels between PDAC tumor cells and accumulated neutrophil, which transfer cyclic adenosine monophosphate (cAMP) from cancer to neutrophil cells, which supports the survival and polarization. Taken together, our data suggesting that GJB3 could act as a potential therapeutic target of PDAC liver metastasis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Neutrófilos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas de Membrana , Neoplasias Pancreáticas
15.
Cancer Lett ; 538: 215693, 2022 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35472437

RESUMO

Owing to the lack of early diagnosis, pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal tumours. Because acinar-to-ductal metaplasia (ADM) is a critical process to pancreatic regeneration and PDAC initiation, we applied GSE65146, a dataset composed of transcripts at different time points in wild-type and KrasG12D mutant mice upon pancreatitis induction, to obtain regeneration- and tumour initiation-related genes. By overlapping with genes differentially expressed in human PDAC, we defined the initiation- and progression-related genes, and the most prognostic gene, SULF2, was selected for further verification. By using multiple PDAC genetically engineered murine models (GEMMs), we further verified that the expression of SULF2 was increased at the ADM and PDAC stages. Functionally, SULF2 was able to promote the dedifferentiation of acinar cells as well as the metastatic ability of PDAC. Additionally, our study revealed that SULF2 could enhance TGFß-SMAD signalling via GDF15. More importantly, serum SULF2 was elevated in patients with PDAC, and in combination with CA19-9, it provided a better method for PDAC diagnosis. Herein, our study screened out key genes for the initiation and progression of PDAC, providing potential indicators for the diagnosis of the disease.


Assuntos
Carcinoma Ductal Pancreático , Fator 15 de Diferenciação de Crescimento , Neoplasias Pancreáticas , Proteínas Smad , Sulfatases , Células Acinares , Animais , Carcinoma Ductal Pancreático/patologia , Progressão da Doença , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Sulfatases/metabolismo
16.
Cell Oncol (Dordr) ; 45(3): 367-379, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35486320

RESUMO

BACKGROUND: Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism. METHODS: The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms. RESULTS: We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression. CONCLUSIONS: Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Cell Prolif ; 55(5): e13237, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35487760

RESUMO

OBJECTIVES: This study investigated the specific molecular mechanism and the roles of extracellular matrix protein Spondin 1 (SPON1) in the development of pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: The expression pattern and clinical relevance of SPON1 was determined in GEO, Ren Ji and TCGA datasets, further validated by immunohistochemical staining and Kaplan-Meier analysis. Loss and gain of function experiments were employed to investigate the cellular function of SPON1 in vitro. Gene set enrichment analysis, luciferase assay, immunofluorescence and Western blot and immunoprecipitation were applied to reveal the underlying molecular mechanisms. Subcutaneous xenograft model was used to test the role of SPON1 in tumour growth and maintenance in vivo. RESULTS: SPON1 is significantly upregulated in PDAC tumour tissues and correlated with progression of PDAC. Loss and gain of function experiments showed that SPON1 promotes the growth and colony formation ability of pancreatic cancer cells. Combining bioinformatics assays and experimental signalling evidences, we found that SPON1 can enhance the IL-6/JAK/STAT3 signalling. Mechanistically, SPON1 exerts its oncogenic roles in pancreatic cancer by maintaining IL-6R trans-signalling through stabilizing the interaction of soluble IL-6R (sIL-6R) and glycoprotein-130 (gp130) in PDAC cells. Furthermore, SPON1 depletion greatly reduced the tumour burden, exerted positive effect with gemcitabine, prolonging PDAC mice overall survival. CONCLUSIONS: Our data indicate that SPON1 expression is dramatically increased in PDAC and that SPON1 promotes tumorigenicity by activating the sIL-6R/gp130/STAT3 axis. Collectively, our current work suggests SPON1 may be a potential therapy target for PDAC patient.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/uso terapêutico , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
18.
Mol Oncol ; 15(11): 3076-3090, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33932092

RESUMO

Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E ) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild-type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1-knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c-Myc via post-translational regulation. Pharmacological activation of PP2A with FTY-720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Glicólise/genética , Humanos , Mutação/genética , Neoplasias Pancreáticas/patologia , Fosfoproteínas/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
19.
Cancer Lett ; 508: 47-58, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-33766751

RESUMO

Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC) and is one of the important causes of local recurrence in resected pancreatic cancer, but the molecular mechanism remains largely unexplored. Here, we used immunohistochemistry staining to determine the expression of CD74. Then the in vivo PNI model, in vitro neuroplasticity assay, cell proliferation assay, wound healing and Transwell-based invasion assay were performed to examine the function of CD74 in pancreatic cancer cell lines. ChIP assay and Luciferase reporter assay were used to illustrate the mechanism underlying CD74 induced GDNF expression. We confirmed that the expression level of CD74 was an independent predictor of PNI and poor prognosis for PDAC. Moreover, we found that upregulation of CD74 on PDAC enhanced its migration and invasive capabilities and potentiated the secretion of neurotrophic factor GDNF to promote the neuroplasticity. Mechanistically, CD74 promoted GDNF production via the AKT/EGR-1/GDNF axis in PDAC. Taken together, our findings suggest a supportive role of CD74 in the PNI of PDAC, and deepen our understanding of how cancer cells promote neuroplasticity in the microenvironment of PDAC.


Assuntos
Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Plasticidade Neuronal , Neurônios/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Sialiltransferases/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Invasividade Neoplásica , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
20.
Cell Death Dis ; 12(3): 273, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723230

RESUMO

Chronic pancreatitis (CP) is characterized by a wide range of irreversible fibro-inflammatory diseases with largely ambiguous pathogenesis. Although neddylation pathway has been implicated in regulating immune responses, whether the dysregulation of neddylation is involved in the progression of CP and how neddylation regulates the inflammatory microenvironment of CP have not yet been reported. Here, we demonstrate that global inactivation of neddylation pathway by MLN4924 significantly exacerbates chronic pancreatitis. The increased M2 macrophage infiltration, mediated by the upregulated chemokine (C-C motif) ligand 5 (CCL5), is responsible for the enhanced pancreatitis-promoting activity of MLN4924. Both CCL5 blockade and macrophage depletion contribute to alleviating pancreatic fibrosis and inflammation in MLN4924-treated CP mice. Mechanistic investigation identifies that inactivation of Cullin-RING ligases (CRLs) stabilizes cellular levels of hypoxia-inducible factor 1α (HIF-1α), which increases CCL5 expression by promoting CCL5 transactivation. Clinically, UBE2M expression remarkably decreases in human CP tissues compared with normal specimens and the levels of CCL5 and M2 marker CD163 are negatively correlated with UBE2M intensity, suggesting that neddylation is involved in the pathogenesis of pancreatitis. Hence, our studies reveal a neddylation-associated immunopathogenesis of chronic pancreatitis and provide new ideas for the disease treatment.


Assuntos
Quimiocina CCL5/metabolismo , Quimiotaxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/metabolismo , Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Linhagem Celular , Quimiocina CCL5/genética , Quimiotaxia/efeitos dos fármacos , Ciclopentanos/toxicidade , Modelos Animais de Doenças , Inibidores Enzimáticos/toxicidade , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Fenótipo , Pirimidinas/toxicidade , Transdução de Sinais , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA