Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167378, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37758151

RESUMO

It has been recently demonstrated that free DNA tracers have the potential in tracing water flow and contaminant transport through the vadose zone. However, whether the free DNA tracer can be used in flood irrigation area to track water flow and solute/contaminant transport is still unclear. To reveal the infiltration process and retention mechanisms of surface applied free DNA tracer through soil under flood irrigation, we tested the fate and transport behavior of surface applied free DNA tracers through packed saturated sandy soil columns with a 10 cm water head mimicking flood irrigation. From the experimental breakthrough curves and by fitting a two-site kinetic sorption model (R2 = 0.83-0.91 and NSE = 0.79-0.89), adsorption/desorption rates could be obtained and tracer retention profiles could be simulated. Together these results revealed that 1) the adsorption of free DNA was dominantly to clay particles in the soil, which took up 1.96 % by volume, but took up >97.5 % by surface area and densely cover the surface of sand particles; and 2) at a pore water pH of 8.0, excluding the 4.9 % passing through and 3.1 % degradation amount, the main retention mechanisms in the experimental soil were ligand exchange (42.0 %), Van der Waals interactions (mainly hydrogen bonds), electrostatic forces and straining (together 44.7 %), and cation bridge (5.3 %). To our knowledge, this study is the first to quantify the contribution of each of the main retention mechanisms of free synthetic DNA tracers passing through soil. Our findings could facilitate the application of free DNA tracer to trace vadose zone water flow and solute/contaminant transport under flood irrigation and other infiltration conditions.


Assuntos
Poluentes do Solo , Solo , Solo/química , Inundações , Argila , Poluentes do Solo/análise , Água , Areia
2.
Sci Total Environ ; 892: 164397, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37247732

RESUMO

As a tree species of shelterbelts, Populus popularis maintains significant ecological functions in arid and semiarid areas. However, stand transpiration (T) and canopy conductance (gc) dynamics of P. popularis are unclear in arid irrigated areas with shallow groundwater fluctuations. To better understand the responses of T and gc to meteorological factors, soil water, and shallow groundwater in arid areas, we observed the environmental conditions and sap flow of P. popularis, and quantified T and gc in three growing seasons of 2018-2020 in a typical arid area of China. Results showed T and gc ranged from 0.18 to 6.11 mm day-1 and 2.26-12.54 mm s-1 in 2018-2020, respectively. Solar radiation and vapor pressure deficit (VPD) were major drivers of T at daily scales. It was consistently found that T exponentially decreased with increasing groundwater table depth (GTD) and decreasing reference evapotranspiration in three years. gc is primarily influenced by VPD and is positively related to soil water content in 0-30 cm soil layer (SWC0-30 cm). Moreover, low SWC0-30 cm and deepening GTD jointly decreased T and gc by 22.45 % and 30.41 %, respectively. The response of gc to VPD was susceptible to groundwater fluctuations, and the synergistic influences of VPD and GTD on gc could be well described by the logarithmic function, especially in 2019. The sensitivity of gc to VPD and its variations under different environmental conditions suggested that a flexible stomatal regulation of transpiration occurred in the observed P. popularis with the arid climate and shallow groundwater. These findings provided the essential basis for the water use strategy of P. popularis and stand water resources management in arid regions.


Assuntos
Populus , Água , Água/fisiologia , Populus/fisiologia , Transpiração Vegetal/fisiologia , Solo , Estações do Ano , Árvores/fisiologia
3.
Sci Total Environ ; 873: 162340, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822425

RESUMO

To cope with the problems of agricultural water conflicts and secondary soil salinization in arid regions, a fuzzy credibility-based multi-objective simulation-optimization model is proposed for optimizing irrigation water allocation and crop area planning under uncertainty. This model combines simulation module of enabling to quantify daily physical process of water-salt movement among soil water, crop root zone and groundwater aquifers, optimization module of managing water resources and fuzzy credibility-constrained programming into a general framework. It's applied to a case study in the Jiefangzha Irrigation Subarea in Hetao Irrigation District, Northwest China. Three objectives encompassing maximizing net economic benefits, maximizing nutritional water productivity and minimizing carbon emissions from agricultural system are interconnected through decision variables. Four credibility scenarios of fuzzy constrains including ß = 0.6 to 0.9 are presented for obtaining decision-making solutions. Through NSGA-III, such a high-dimensional multi-objective problem is solved. This study uses the multi-objective constraint-handling strategy to handle constraints, which exploits the effective information within infeasible solutions. Moreover, it emphasizes the importance of soil water-salt movement processes in determining optimal solutions and helps decision makers weigh the system outputs and risk level of violating constraints. Results illustrate that when ß increases from 0.6 to 0.9, net economic benefit decreases from 1.742 × 109 Yuan to 1.706 × 109 Yuan, nutritional water productivity decreases from 9136.0 kcal/m3 to 8819.6 kcal/m3, and carbon emissions increase from 439.6 × 106 kg. C to 441.6 × 106 kg.C, which shows that an increasing credibility level leads to lower system benefits and conservative system outputs. The results can provide valuable information for managing irrigation water resources and controlling salinity accumulation. Furthermore, dynamic decisions related to water-salt movement processes can be readily generated. These findings show that the developed approach is globally applicable for managing irrigation water in arid and semiarid regions that face similar problems.

4.
Water Res ; 223: 119009, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037713

RESUMO

Although multiple experimental studies have proven the use of free synthetic DNA as tracers in hydrological systems, their quantitative fate and transport, especially through the vadose zone, is still not well understood. Here we simulate the water flow and breakthrough of deuterium (D) and one free synthetic DNA tracer from a 10-day experiment conducted in a transient variably saturated 1m3 10° sloped lysimeter using the HYDRUS-2D software package. Recovery and breakthrough flux of D (97.78%) and the DNA tracer (1.05%) were captured well with the advection-dispersion equation (R2 = 0.949, NSE = 0.937) and the Schijven and Simunek two-site kinetic sorption model recommended for virus transport modeling (R2 = 0.824, NSE = 0.823), respectively. The degradation of the DNA tracer was very slow (estimated to be 10% in 10 days), because the "loamy sand" porous media in our lysimeter was freshly crushed basaltic tephra (i.e., crushed rocks) and the microbes and DNase that could potentially degrade DNA in regular soils were rare in our "loamy sand". The timing of the concentration peaks and the HYDRUS-2D simulated temporal and spatial distribution of DNA in the lysimeter both revealed the role of the solid-water-air contact lines in mobilizing and carrying DNA tracer under the experimental variably saturated transient flow condition. The free DNA was nearly non-selectively transported through the porous media, and showed a slightly early breakthrough, possibly due to a slight effect of anion exclusion or size exclusion. Our results indicate that free DNA have the potential to trace vadose zone water flow and solute/contaminant transport, and to serve as surrogates to trace viral pathogen pollution in soil-water systems. To our knowledge, this study is the first to simulate transport mechanisms of free synthetic DNA tracers through real soil textured porous media under variably saturated transient flow condition.


Assuntos
Água Subterrânea , Movimentos da Água , Desoxirribonucleases , Deutério , Modelos Teóricos , Areia , Solo , Água
5.
Sci Total Environ ; 703: 134621, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31759711

RESUMO

Climate change and associated elevated atmospheric CO2 concentration and rising temperature have become a great challenge to agricultural production especially in arid and semiarid regions, and a great concern to scientists worldwide. Thus, it is very important to assess the response of crop growth and water productivity to climate change projections, which in turn can help devise adaptive strategies to mitigate their impact. An agro-hydrological model with well consideration of CO2 effects on both the stomatal conductance and leaf area was established. The model was well calibrated and validated using the data collected from the middle oasis of Heihe River basin, northwest China, which was selected as a typical arid region. Simulations of soil water contents and crop growth matched well with observations. Then various scenarios were designed with considering three climate change alternatives (RCP 2.6, RCP 4.5 and RCP 8.5) and three agricultural water-saving alternatives in the context of irrigation water availability being constant. Responses of crop growth and water productivity were predicted for thirty years from 2018 to 2047. As compared to current situation, there would be a reduction of 3.4-8.6% in crop yield during the period of 2018-2027 and an increase of 1.5-18.7% in crop yield during the period of 2028-2047 for seed corn, and an increase of 7.4-26.7% in crop yield during the period of 2018-2047 for spring wheat, respectively. Moreover, results showed an increase in water productivity ranged from 14.3% to 44.5% for seed corn and from 34.7% to 52.0% for spring wheat, respectively. Furthermore, adaptive strategies to climate change were recommended for the seed corn and spring wheat, respectively. Our results are expected to provide implications for devising adaptive strategies to changing environments in other arid and irrigation-fed areas.


Assuntos
Mudança Climática , Irrigação Agrícola , China , Produtos Agrícolas , Água
6.
Sci Total Environ ; 619-620: 1170-1182, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29734596

RESUMO

Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ETg) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ETa) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP.

7.
Sci Total Environ ; 613-614: 1003-1012, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946373

RESUMO

Quantitatively ascertaining and analyzing long-term responses of crop yield and nitrate leaching on varying irrigation and fertilization treatments are focal points for guaranteeing crop yield and reducing nitrogen loss. The calibrated agricultural-hydrological RZWQM2 model was used to explore the long-term (2003-2013) transport processes of water and nitrogen and the nitrate leaching amount into groundwater in summer maize and winter wheat rotation field in typical intensive plant area in the North China Plain, Daxing district of Beijing. Simulation results showed that application rates of irrigation and nitrogen fertilizer have couple effects on crop yields and nitrogen leaching of root zone. When both the irrigation and fertilizer for summer maize and winter wheat were 400mm and 400kgNha-1, respectively, nitrate leaching into groundwater accounted for 47.9% of application amount of nitrogen fertilizer. When application amount of irrigation is 200mm and fertilization is 200kgNha-1, NUPE (nitrogen uptake efficiency), NUE (nitrogen use efficiency), NPFP (nitrogen partial factor productivity), and Wpi (irrigation water productive efficiency) were in general higher than that under other irrigation and fertilization condition (irrigation from 104-400mm, fertilizer 104-400kgNha-1). Irrigation bigger than 200mm could shorten the response time of nitrate leaching in deeper soil layer in different irrigation treatment.

8.
Sci Rep ; 7: 43122, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220874

RESUMO

Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.


Assuntos
Irrigação Agrícola , Água Subterrânea , Modelos Biológicos , Zea mays/fisiologia , Clima Desértico
9.
Ground Water ; 46(1): 80-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18181867

RESUMO

In arid regions, human activities like agriculture and industry often require large ground water extractions. Under these circumstances, appropriate ground water management policies are essential for preventing aquifer overdraft, and thereby protecting critical ecologic and economic objectives. Identification of such policies requires accurate simulation capability of the ground water system in response to hydrological, meteorological, and human factors. In this research, artificial neural networks (ANNs) were developed and applied to investigate the effects of these factors on ground water levels in the Minqin oasis, located in the lower reach of Shiyang River Basin, in Northwest China. Using data spanning 1980 through 1997, two ANNs were developed to model and simulate dynamic ground water levels for the two subregions of Xinhe and Xiqu. The ANN models achieved high predictive accuracy, validating to 0.37 m or less mean absolute error. Sensitivity analyses were conducted with the models demonstrating that agricultural ground water extraction for irrigation is the predominant factor responsible for declining ground water levels exacerbated by a reduction in regional surface water inflows. ANN simulations indicate that it is necessary to reduce the size of the irrigation area to mitigate ground water level declines in the oasis. Unlike previous research, this study demonstrates that ANN modeling can capture important temporally and spatially distributed human factors like agricultural practices and water extraction patterns on a regional basin (or subbasin) scale, providing both high-accuracy prediction capability and enhanced understanding of the critical factors influencing regional ground water conditions.


Assuntos
Redes Neurais de Computação , Abastecimento de Água , Agricultura , China , Simulação por Computador , Conservação dos Recursos Naturais , Humanos
10.
Ying Yong Sheng Tai Xue Bao ; 19(12): 2637-42, 2008 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-19288716

RESUMO

A field experiment was conducted to study the effects of sufficient and non-sufficient irrigation with saline water on the soil water-salt distribution and spring corn yield in the middle reach of Shiyanghe River Basin. The results showed that under both sufficient and non-sufficient irrigation, the peak value of soil water content all appeared during irrigation period, and the variation range of the water content was higher under sufficient than under non-sufficient irrigation. Soil salinity was positively correlated with the salinity of irrigation water. At the same salinity of irrigation water, the soil salinity under non-sufficient irrigation was lower than that under sufficient irrigation. Under non-sufficient irrigation, the soil layer with salt accumulation was moved up, but the water and salt contents in 80-100 cm soil layer were less affected by the amount and salinity of irrigation water. Comparing with that under fresh water irrigation, the spring corn yield under saline water irrigation was decreased by 15%-22%. Under non-sufficient irrigation with 9 g x L(-1), 6 g x L(-1), and 3 g x L(-1) of saline water, the average salt content in 1 m soil layer after harvest was decreased by 8.1%, 12.4%, and 18.4%, and the corn yield was only decreased by 3.4%, 6.8%, and 3.0%, respectively, compared with those under sufficient irrigation.


Assuntos
Biomassa , Cloreto de Sódio/análise , Solo/análise , Água/análise , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , China , Rios , Salinidade , Estações do Ano , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...