Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(2): e2208221, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36300813

RESUMO

Interfacial magnetism stimulates the discovery of giant magnetoresistance (MR) and spin-orbital coupling across the heterointerfaces, facilitating the intimate correlation between spin transport and complex magnetic structures. Over decades, functional heterointerfaces composed of nitrides have seldom been explored due to the difficulty in synthesizing high-quality nitride films with correct compositions. Here, the fabrication of single-crystalline ferromagnetic Fe3 N thin films with precisely controlled thicknesses is reported. As film thickness decreases, the magnetization dramatically deteriorates, and the electronic state changes from metallic to insulating. Strikingly, the high-temperature ferromagnetism is maintained in a Fe3 N layer with a thickness down to 2 u.c. (≈8 Å). The MR exhibits a strong in-plane anisotropy; meanwhile, the anomalous Hall resistivity reverses its sign when the Fe3 N layer thickness exceeds 5 u.c. Furthermore, a sizable exchange bias is observed at the interfaces between a ferromagnetic Fe3 N and an antiferromagnetic CrN. The exchange bias field and saturation moment strongly depend on the controllable bending curvature using the cylinder diameter engineering technique, implying the tunable magnetic states under lattice deformation. This work provides a guideline for exploring functional nitride films and applying their interfacial phenomena for innovative perspectives toward practical applications.

2.
Nat Commun ; 13(1): 7774, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522321

RESUMO

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

3.
Adv Sci (Weinh) ; 9(33): e2203473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209382

RESUMO

Actinide materials have various applications that range from nuclear energy to quantum computing. Most current efforts have focused on bulk actinide materials. Tuning functional properties by using strain engineering in epitaxial thin films is largely lacking. Using uranium dioxide (UO2 ) as a model system, in this work, the authors explore strain engineering in actinide epitaxial thin films and investigate the origin of induced ferromagnetism in an antiferromagnet UO2 . It is found that UO2+ x thin films are hypostoichiometric (x<0) with in-plane tensile strain, while they are hyperstoichiometric (x>0) with in-plane compressive strain. Different from strain engineering in non-actinide oxide thin films, the epitaxial strain in UO2 is accommodated by point defects such as vacancies and interstitials due to the low formation energy. Both epitaxial strain and strain relaxation induced point defects such as oxygen/uranium vacancies and oxygen/uranium interstitials can distort magnetic structure and result in magnetic moments. This work reveals the correlation among strain, point defects and ferromagnetism in strain engineered UO2+ x thin films and the results offer new opportunities to understand the influence of coupled order parameters on the emergent properties of many other actinide thin films.

4.
Sci Adv ; 8(43): eabq3981, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306366

RESUMO

Emergent phenomena at heterointerfaces are directly associated with the bonding geometry of adjacent layers. Effective control of accessible parameters, such as the bond length and bonding angles, offers an elegant method to tailor competing energies of the electronic and magnetic ground states. In this study, we construct unit-thick syntactic layers of cobaltites within a strongly tilted octahedral matrix via atomically precise synthesis. The octahedral tilt patterns of adjacent layers propagate into cobaltites, leading to a continuation of octahedral tilting while maintaining substantial misfit tensile strain. These effects induce severe rumpling within an atomic plane of neighboring layers, further triggering the electronic reconstruction between the splitting orbitals. First-principles calculations reveal that the cobalt ions transit to a higher spin state level upon octahedral tilting, resulting in robust ferromagnetism in ultrathin cobaltites. This work demonstrates a design methodology for fine-tuning the lattice and spin degrees of freedom in correlated quantum heterostructures by exploiting epitaxial geometric engineering.

5.
Phys Rev Lett ; 128(1): 017202, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061447

RESUMO

Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.

6.
ACS Appl Mater Interfaces ; 13(18): 22059-22064, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905221

RESUMO

Twin domains are often found as structural defects in symmetry mismatched epitaxial thin films. The delafossite ABO2, which has a rhombohedral structure, is a good example that often forms twin domains. Although bulk metallic delafossites are known to be the most conducting oxides, high conductivity is yet to be realized in thin film forms. Suppressed conductivity found in thin films is mainly caused by the formation of twin domains, and their boundaries can be a source of scattering centers for charge carriers. To overcome this challenge, the underlying mechanism for their formation must be understood so that such defects can be controlled and eliminated. Here, we report the origin of structural twins formed in a CuCrO2 delafossite thin film on a substrate with hexagonal or triangular symmetries. A robust heteroepitaxial relationship is found for the delafossite film with the substrate, and the surface termination turns out to be critical to determine and control the domain structure of epitaxial delafossites. Based on such discoveries, we also demonstrate twin-free epitaxial thin films grown on high-miscut substrates. This finding provides an important synthesis strategy for growing single-domain delafossite thin films and can be applied to other delafossites for the epitaxial synthesis of high-quality thin films.

7.
Nano Lett ; 21(7): 3146-3154, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33750141

RESUMO

Manipulation of octahedral distortion at atomic scale is an effective means to tune the ground states of functional oxides. Previous work demonstrates that strain and film thickness are variable parameters to modify the octahedral parameters. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied. Here we propose a new route to tune the ferromagnetism in SrRuO3 (SRO) ultrathin layers by oxygen coordination of adjacent SrCuO2 (SCO) layers. The infinite-layered CuO2 exhibits a structural transformation from "planar-type" to "chain-type" with reduced film thickness. Two orientations dramatically modify the polyhedral connectivity at the interface, thus altering the octahedral distortion of SRO. The local structural variation changes the spin state of Ru and orbital hybridization strength, leading to a significant change in the magnetoresistance and anomalous Hall resistivity. These findings could launch investigations into adaptive control of functionalities in quantum oxide heterostructures using oxygen coordination.

9.
Nano Lett ; 19(2): 1033-1038, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30673240

RESUMO

In classical morphotropic piezoelectric materials, rhombohedral and tetragonal phase variants can energetically compete to form a mixed phase regime with improved functional properties. While the discovery of morphotropic-like phases in multiferroic BiFeO3 films has broadened this definition, accessing these phase spaces is still typically accomplished through isovalent substitution or heteroepitaxial strain which do not allow for continuous modification of phase composition postsynthesis. Here, we show that it is possible to use low-energy helium implantation to tailor morphotropic phases of epitaxial BiFeO3 films postsynthesis in a continuous and iterative manner. Applying this strain doping approach to morphotropic films creates a new phase space based on internal and external lattice stress that can be seen as an analogue to temperature-composition phase diagrams of classical morphotropic ferroelectric systems.

10.
Adv Mater ; 31(4): e1805389, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30489665

RESUMO

Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, FMIs are innately rare to find in nature as ferromagnetism generally accompanies metallicity. Here, novel room-temperature FMI films that are epitaxially synthesized by deliberate control of the ratio between two B-site cations in the double perovskite Sr2 Fe1+ x Re1- x O6 (-0.2 ≤ x ≤ 0.2) are reported. In contrast to the known FM metallic phase in stoichiometric Sr2 FeReO6 , an FMI state with a high Curie temperature (Tc ≈ 400 K) and a large saturation magnetization (MS ≈ 1.8 µB f.u.-1 ) is found in highly cation-ordered Fe-rich phases. The stabilization of the FMI state is attributed to the formation of extra Fe3+ Fe3+ and Fe3+ Re6+ bonding states, which originate from the relatively excess Fe ions owing to the deficiency in Re ions. The emerging FMI state created by controlling cations in the oxide double perovskites opens the door to developing novel oxide quantum materials and spintronic devices.

11.
Adv Sci (Weinh) ; 5(11): 1800356, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479913

RESUMO

The coupling between a material's lattice and its underlying spin state links structural deformation to magnetic properties; however, traditional strain engineering does not allow the continuous, post-synthesis control of lattice symmetry needed to fully utilize this fundamental coupling in device design. Uniaxial lattice expansion induced by post-synthesis low energy helium ion implantation is shown to provide a means of bypassing these limitations. Magnetocrystalline energy calculations can be used a priori to estimate the predictive design of a material's preferred magnetic spin orientation. The efficacy of this approach is experimentally confirmed in a spinel CoFe2O4 model system where the epitaxial film's magnetic easy axis is continuously manipulated between the out-of-plane (oop) and in-plane (ip) directions as lattice tetragonality moves from ip to oop with increasing strain doping. Macroscopically gradual and microscopically abrupt changes to preferential spin orientation are demonstrated by combining ion irradiation with simple beam masking and lithographic procedures. The ability to design magnetic spin orientations across multiple length scales in a single crystal wafer using only crystal symmetry considerations provides a clear path toward the rational design of spin transfer, magnetoelectric, and skyrmion-based applications where magnetocrystalline energy must be dictated across multiple length scales.

12.
Inorg Chem ; 57(12): 7362-7371, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29812925

RESUMO

The crystal chemistry and magnetic properties for two triple perovskites, Ba3Fe1.56Ir1.44O9 and Ba3NiIr2O9, grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A3MM2'O9 hexagonal symmetry characteristic of most triple perovskites, including Ba3NiIr2O9, Ba3Fe1.56Ir1.44O9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (TN = 270 K) was observed for Ba3Fe1.56Ir1.44O9.

14.
Sci Rep ; 6: 26475, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27220751

RESUMO

The 'MAlB' phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36-0.49 µΩm) and - like a metal - drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm(-1)K(-1) at 26 °C). In the 25-1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10(-6 )K(-1). Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...