Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(2): 341-344, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030601

RESUMO

Integrated wavelength filters with high optical rejection are key components in several silicon photonics circuits, including quantum photon-pair sources and spectrometers. Non-coherent cascading of modal-engineered Bragg filters allows for remarkable optical rejections in structures that only support transverse-electric (TE) polarized modes such as uncladded 220-nm-thick silicon. However, the restriction to TE-only platforms limits the versatility of the non-coherent cascading approach. Here, we propose and experimentally demonstrate a new, to the best of our knowledge, approach for high-rejection filters in polarization-diverse platforms by combining non-coherent cascading of modal-engineered Bragg filters and anisotropy-engineered metamaterial bends. Bragg filters provide a high rejection of the TE mode, while the metamaterial bends remove any residual power propagating in the transverse-magnetic (TM) mode, without any penalty in terms of insertion loss or device footprint. Based on this strategy, we demonstrate optical rejection exceeding 60 dB in 300-nm-thick, cladded silicon waveguides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...