Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Pract ; 25(8): 861, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30657363
2.
Annu Rev Physiol ; 69: 561-77, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17002595

RESUMO

Receptor tyrosine kinases (RTKs) are a unique family of cell surface receptors, each containing a common intracellular domain that has tyrosine kinase activity. However, RTKs share many signaling molecules with another unique family of cell surface receptors, the seven-transmembrane receptors (7TMRs), and these receptor families can activate similar signaling cascades. In this review of RTK signaling, we describe the role of cross talk between RTKs and 7TMRs, focusing specifically on the role played in this process by beta-arrestins and by G proteins.


Assuntos
Arrestinas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Receptor Cross-Talk/fisiologia , beta-Arrestinas
3.
Nature ; 437(7058): 569-73, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16177793

RESUMO

Hormones mobilize intracellular second messengers and initiate signalling cascades involving protein kinases and phosphatases, which are often spatially compartmentalized by anchoring proteins to increase signalling specificity. These scaffold proteins may themselves be modulated by hormones. In adipocytes, stimulation of beta-adrenergic receptors increases cyclic AMP levels and activates protein kinase A (PKA), which stimulates lipolysis by phosphorylating hormone-sensitive lipase and perilipin. Acute insulin treatment activates phosphodiesterase 3B, reduces cAMP levels and quenches beta-adrenergic receptor signalling. In contrast, chronic hyperinsulinaemic conditions (typical of type 2 diabetes) enhance beta-adrenergic receptor-mediated cAMP production. This amplification of cAMP signalling is paradoxical because it should enhance lipolysis, the opposite of the known short-term effect of hyperinsulinaemia. Here we show that in adipocytes, chronically high insulin levels inhibit beta-adrenergic receptors (but not other cAMP-elevating stimuli) from activating PKA. We measured this using an improved fluorescent reporter and by phosphorylation of endogenous cAMP-response-element binding protein (CREB). Disruption of PKA scaffolding mimics the interference of insulin with beta-adrenergic receptor signalling. Chronically high insulin levels may disrupt the close apposition of beta-adrenergic receptors and PKA, identifying a new mechanism for crosstalk between heterologous signal transduction pathways.


Assuntos
Adipócitos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Insulina/farmacologia , Lipólise , Camundongos , Transdução de Sinais/efeitos dos fármacos
4.
Mol Endocrinol ; 19(11): 2760-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15994203

RESUMO

G protein-coupled receptor kinases (GRKs) regulate seven-transmembrane receptors (7TMRs) by phosphorylating agonist-activated 7TMRs. Recently, we have reported that GRK2 can function as a negative regulator of insulin action by interfering with G protein-q/11 alpha-subunit (Galphaq/11) signaling, causing decreased glucose transporter 4 (GLUT4) translocation. We have also reported that chronic endothelin-1 (ET-1) treatment leads to heterologous desensitization of insulin signaling with decreased tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and Galphaq/11, and decreased insulin-stimulated glucose transport in 3T3-L1 adipocytes. In the current study, we have investigated the role of GRK2 in chronic ET-1-induced insulin resistance. Insulin-induced GLUT4 translocation was inhibited by pretreatment with ET-1 for 24 h, and we found that this inhibitory effect was rescued by microinjection of anti-GRK2 antibody or GRK2 short interfering RNA. We further found that GRK2 mediates the inhibitory effects of ET-1 by two distinct mechanisms. Firstly, adenovirus-mediated overexpression of either wild-type (WT)- or kinase-deficient (KD)-GRK2 inhibited Galphaq/11 signaling, including tyrosine phosphorylation of Galphaq/11 and cdc42-associated phosphatidylinositol 3-kinase activity. Secondly, ET-1 treatment caused Ser/Thr phosphorylation of IRS-1 and IRS-1 protein degradation. Overexpression of KD-GRK2, but not WT-GRK2, inhibited ET-1-induced serine 612 phosphorylation of IRS-1 and restored activation of this pathway. Taken together, these results suggest that GRK2 mediates ET-1-induced insulin resistance by 1) inhibition of Galphaq/11 activation, and this effect is independent of GRK2 kinase activity, and 2) GRK2 kinase activity-mediated IRS-1 serine phosphorylation and degradation.


Assuntos
Adipócitos/metabolismo , Endotelina-1/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Resistência à Insulina , Fosfoproteínas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Endotelina-1/metabolismo , Endotelina-1/toxicidade , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Camundongos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , RNA Interferente Pequeno/farmacologia , Serina/metabolismo , Ativação Transcricional
5.
J Biol Chem ; 280(2): 1016-23, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15520010

RESUMO

Beta-arrestin1 is an adapter/scaffold for many G protein-coupled receptors during mitogen-activated protein kinase signaling. Phosphorylation of beta-arrestin1 at position Ser-412 is a regulator of beta-arrestin1 function, and in the present study, we showed that insulin led to a time- and dose-dependent increase in beta-arrestin1 Ser-412 phosphorylation, which blocked isoproterenol- and lysophosphatidic acid-induced Ser-412 dephosphorylation and impaired ERK signaling by these G protein-coupled receptor ligands. Insulin treatment also led to accumulation of Ser-412-phosphorylated beta-arrestin1 at the insulin-like growth factor 1 receptor and prevented insulin-like growth factor 1/Src association. Insulin-induced Ser-412 phosphorylation was partially dependent on ERK as treatment with the MEK inhibitor PD98059 inhibited the insulin effect (62% reduction, p = 0.03). Inhibition of phosphatidylinositol 3-kinase by wortmannin did not have a significant effect (9% reduction, p = 0.41). We also found that the protein phosphatase 2A (PP2A) was in a molecular complex with beta-arrestin1 and that the PP2A inhibitor okadaic acid increased Ser-412 phosphorylation. Concomitant addition of insulin and okadaic acid did not produce an additive effect on Ser-412 phosphorylation, suggesting a common mechanism. Small t antigen specifically inhibited PP2A, and in HIRcB cells expressing small t antigen, beta-arrestin1 Ser-412 phosphorylation was increased, and insulin had no further effect. Insulin treatment caused increased beta-arrestin1 Ser-412 phosphorylation, which blocked mitogen-activated protein kinase signaling and internalization by beta-arrestin1-dependent receptors with no effect on beta-adrenergic receptor Gs-mediated cAMP production. These findings provide a new mechanism for insulin-induced desensitization of ERK activation by Galphai-coupled receptors.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Antígenos Virais de Tumores/metabolismo , Arrestinas/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Okadáico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica , Proteína Fosfatase 2 , Receptor IGF Tipo 1/metabolismo , Receptores Adrenérgicos beta/metabolismo , Fatores de Tempo , beta-Arrestinas
6.
Mol Cell Biol ; 24(20): 8929-37, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15456867

RESUMO

beta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.


Assuntos
Acetilcisteína/análogos & derivados , Arrestinas/metabolismo , Insulina/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Acetilcisteína/metabolismo , Animais , Arrestinas/genética , Células Cultivadas , Inibidores de Cisteína Proteinase/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Proteínas Substratos do Receptor de Insulina , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Serina/metabolismo , beta-Arrestina 1 , beta-Arrestinas
7.
EMBO J ; 23(14): 2821-9, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15241473

RESUMO

G protein-coupled receptor kinases (GRKs) represent a class of proteins that classically phosphorylate agonist-activated G protein-coupled receptors, leading to uncoupling of the receptor from further G protein activation. Recently, we have reported that the heterotrimeric G protein alpha-subunit, Galphaq/11, can mediate insulin-stimulated glucose transport. GRK2 contains a regulator of G protein signaling (RGS) domain with specificity for Galphaq/11. Therefore, we postulated that GRK2 could be an inhibitor of the insulin signaling cascade leading to glucose transport in 3T3-L1 adipocytes. In this study, we demonstrate that microinjection of anti-GRK2 antibody or siRNA against GRK2 increased insulin-stimulated insulin-responsive glucose transporter 4 (GLUT4) translocation, while adenovirus-mediated overexpression of wild-type or kinase-deficient GRK2 inhibited insulin-stimulated GLUT4 translocation as well as 2-deoxyglucose uptake. Importantly, a mutant GRK2 lacking the RGS domain was without effect. Taken together, these results indicate that through its RGS domain endogenous GRK2 functions as a negative regulator of insulin-stimulated glucose transport by interfering with Galphaq/11 signaling to GLUT4 translocation. Furthermore, inhibitors of GRK2 can lead to enhanced insulin sensitivity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais , Células 3T3-L1 , Adenoviridae/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico , Diferenciação Celular , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Desoxiglucose/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4 , Insulina/farmacologia , Camundongos , Proteínas de Transporte de Monossacarídeos/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinases/análise , Fosfatidilinositol 3-Quinases/metabolismo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Quinases de Receptores Adrenérgicos beta
8.
Prev Cardiol ; 6(1): 34-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12624560

RESUMO

Patients with diabetes mellitus are at a high risk of developing cardiovascular disease, and therefore stand to benefit greatly from a preventive strategy. Recommendations regarding assessment and management of traditional risk factors are basically similar for diabetic and nondiabetic patients with several important differences. Several nontraditional risk factors also play a substantial role in the development of cardiovascular disease in diabetic patients, and need to be addressed if full preventive care is to be provided. In this second in a two-part series, we present current recommendations for reducing the risk of cardiovascular disease in the diabetic patient.


Assuntos
Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/diagnóstico , Angiopatias Diabéticas/epidemiologia , Humanos , Prognóstico , Fatores de Risco
9.
Proc Natl Acad Sci U S A ; 100(1): 161-6, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12509508

RESUMO

beta-Arrestin 1 is required for internalization and mitogen-activated protein (MAP) kinase activation by the beta2 adrenergic receptor (beta2AR). Our previous studies have shown that chronic insulin treatment down-regulates cellular beta-arrestin 1 levels, leading to a marked impairment in G protein-coupled receptor and insulin-like growth factor-1 receptor-mediated MAP kinase and mitogenic signaling. In this study, we show that chronic insulin-treated, beta-arrestin 1depleted 3T3-L1 adipocytes display (i) increased isoproterenol-induced cAMP generation (53 +/- 38% at 1.5 min, 25 +/- 19% at 5 min, 63 +/- 14% at 30 min, and 59 +/- 2% at 60 min), a Galpha(s)-associated pathway; (ii) impaired isoproterenol-induced beta2AR internalization (reduced by 98 +/- 4%), which is required for MAP kinase signaling, a Galpha(i)-associated pathway; and (iii) increased beta-arrestin 1 phosphorylation at Ser-412. Taken together, these findings represent a hitherto unknown mechanism (degradation and phosphorylation of beta-arrestin, whereby the activation of the insulin receptor, belonging to the family of receptor tyrosine kinases, causes supersensitization of Galpha(s)-associated signaling and inhibition of Galpha(i)-associated signaling by the beta2AR, a prototypical G protein-coupled receptor.


Assuntos
Adipócitos/fisiologia , Arrestinas/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Insulina/farmacologia , Receptores Adrenérgicos beta 2/fisiologia , Células 3T3 , Adipócitos/efeitos dos fármacos , Animais , Arrestinas/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Cinética , Camundongos , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Transdução de Sinais , beta-Arrestina 1 , beta-Arrestinas
10.
Prev Cardiol ; 5(4): 183-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12417827

RESUMO

Cardiovascular disease is a major cause of morbidity and mortality in persons with diabetes mellitus. This population represents an important target for preventive therapies aimed at reducing atherosclerosis. Recent molecular research has uncovered many of the cellular mechanisms that lead to atherosclerosis in the diabetic patient. This review, part 1 of a 2-part series, is geared toward clinicians and discusses these mechanisms as they pertain to prevention of cardiovascular disease in patients with diabetes.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Complicações do Diabetes , Angiopatias Diabéticas/prevenção & controle , Glicemia/análise , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/prevenção & controle , Diabetes Mellitus/diagnóstico , Angiopatias Diabéticas/epidemiologia , Angiopatias Diabéticas/etiologia , Humanos , Incidência , Lipoproteínas/sangue , Biologia Molecular , Prevenção Primária/métodos , Prognóstico , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Análise de Sobrevida
11.
Mol Cell Biol ; 22(17): 6272-85, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12167719

RESUMO

beta-Arrestin-1 mediates agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCRs) and is also essential for GPCR mitogenic signaling. In addition, insulin-like growth factor I receptor (IGF-IR) endocytosis is facilitated by beta-arrestin-1, and internalization is necessary for IGF-I-stimulated mitogen-activated protein (MAP) kinase activation. Here, we report that treatment of cells for 12 h with insulin (100 ng/ml) induces an approximately 50% decrease in cellular beta-arrestin-1 content due to ubiquitination of beta-arrestin-1 and proteosome-mediated degradation. This insulin-induced decrease in beta-arrestin-1 content was blocked by inhibition of phosphatidylinositol-3 kinase (PI-3 kinase) and MEK with wortmannin and PD98059, respectively. We also found a marked decrease in the association of beta-arrestin-1 with the IGF-IR and a 55% inhibition of IGF-I-stimulated MAP kinase phosphorylation. In insulin-treated, beta-arrestin-1-downregulated cells, there was complete inhibition of lysophosphatidic acid (LPA) or isoproterenol (ISO)-stimulated MAP kinase phosphorylation. This was associated with a decrease in beta-arrestin-1 association with the beta2-AR as well as a decrease in beta-arrestin-1-Src and Src-beta2-AR association. Ectopic expression of wild-type beta-arrestin-1 in insulin-treated cells in which endogenous beta-arrestin-1 had been downregulated rescued IGF-I- and LPA-stimulated MAP kinase phosphorylation. In conclusion, we found the following. (i) Chronic insulin treatment leads to enhanced beta-arrestin-1 degradation. (ii) This downregulation of endogenous beta-arrestin-1 is associated with decreased IGF-I-, LPA-, and ISO-mediated MAP kinase signaling, which can be rescued by ectopic expression of wild-type beta-arrestin-1. (iii) Finally, these results describe a novel mechanism for heterologous desensitization, whereby insulin treatment can impair GPCR signaling, and highlight the importance of beta-arrestin-1 as a target molecule for this desensitization mechanism.


Assuntos
Arrestinas/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Complexo de Endopeptidases do Proteassoma , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células 3T3/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Humanos , Isoproterenol/farmacologia , Lisofosfolipídeos/farmacologia , MAP Quinase Quinase 1 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Peptídeo Hidrolases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Ratos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , beta-Arrestina 1 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...