Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967897

RESUMO

We investigated trends in temperature, stratification, and hypolimnetic oxygen concentration of German lakes under climate change using observational data and hydrodynamic modelling. Observations from 46 lakes revealed that annually averaged surface temperatures increased by + 0.5 °C between 1990 and 2020 while bottom temperatures remained almost constant. Modelling of 12 lakes predicted further increases in surface temperatures by 0.3 °C/decade until the year 2099 in the most pessimistic emission scenario RCP 8.5 (RCP 4.5: + 0.18 °C/decade; RCP 2.6: + 0.04 °C/decade). Again, bottom temperatures increased much less while summer stratification extended by up to 38 days. Using a simplified oxygen model, we showed that hypolimnetic oxygen concentrations decreased by 0.7-1.9 mg L-1 in response to the extended stratification period. However, model runs assuming lower productivity (e. g. through nutrient reduction) resulted in increased oxygen concentrations even in the most pessimistic emission scenario. Our results suggest that the negative effects of climate change on the oxygen budget of lakes can be efficiently mitigated by nutrient control.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38910491

RESUMO

Iron (Fe) plays an important role in the biogeochemical cycling of carbon and nutrients in aquatic systems. Reactive Fe phases can interact with organic carbon and facilitate the removal of carbon from the biogeochemical cycle; however, this important ecosystem function is often strongly controlled by Fe availability. Due to pollution from lignite mining in the Lusatian province in Northeast Germany, large amounts of iron and sulfate are released into the fluvial-lacustrine system of the Spree River. It was hypothesized that the input of freshly precipitated iron oxyhydroxides from mining areas (e.g., ferrihydrite) alter the biodegradation of particulate organic matter (POM) in downstream lacustrine sediments. To investigate the Fe-dependent degradation of POM, slurries mimicking iron-polluted sediments (85 mg Fe per g, 116 mg Fe per g, and 149 mg Fe per g dry weight) were incubated with plankton or leaf POM under anoxic and oxic headspace conditions, and CO2 and CH4 emissions, water chemistry, and stable isotopes of dissolved inorganic carbon were measured. The experiments revealed that (i) with an increasing Fe content, the CO2 and CH4 emissions were gradually reduced, (ii) CO2 and CH4 production was higher during plankton degradation than during leaf decomposition, and (iii) under oxic conditions, CO2 production was higher and CH4 production was lower when compared to the treatments under anoxic conditions. These findings demonstrate that while benthic mineralization of fresh POM typically releases greenhouse gases into the water column, the availability of iron oxyhydroxides can contribute to reduced greenhouse gas emissions from sediments. This is of considerable relevance for future carbon budgets of similar mining-affected, iron-polluted fluvial-lacustrine river systems.

3.
Sci Total Environ ; 854: 158663, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096220

RESUMO

Engineering solutions to recover phosphorus from municipal wastewater are required to close the anthropogenic phosphorus cycle. After chemical phosphorus elimination by iron, the ferrous iron­phosphorus mineral vivianite forms in digested sludge, and its separation is being researched at the pilot scale. In this study, sludge samples from 16 wastewater treatment plants (WWTPs) demonstrated that phosphorus bound to biomass and redox-sensitive iron in activated sludge was transformed into other phosphorus binding forms, including vivianite, during digestion. Vivianite quantity was approximated using X-ray diffraction and two sequential extractions. These three independent methods of approximating vivianite quantity were closely related confirming their relationship to the vivianite content in the samples. The digested sludge from three WWTPs exhibited comparatively high levels of vivianite-bound phosphorus approximated between 31 % and 51 % of total phosphorus. The controlling factors of vivianite formation were investigated in order to enhance its formation in digested sludge and increase the amount of phosphorus recoverable as vivianite. They were identified using single and multivariate correlation (MLR), considering the sludge properties, sludge composition, and process parameters within the operating range of the 16 WWTPs. Increasing iron content was verified as the primary predictor of significantly increased vivianite formation (MLR: p < 0.001). In addition, increasing sulphur content was found to be an additional significant factor that decreased vivianite formation (MLR: p < 0.05). Furthermore, a comparison of plants using sulphur-free (FeCl2 and FeCl3) and sulphur-containing (FeSO4 and FeClSO4) precipitants indicated that the latter could increase the sulphur content in digested sludge (one-tailed Welch two-sample t-test: t(14.6) = 2.3, p = 0.02). Thus, by increasing the sulphur content, the use of sulphur-comprising precipitants may counteract vivianite formation, whereas sulphur-free precipitants may facilitate it and, hence, promote vivianite recovery.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fosfatos/química , Fósforo/química , Ferro/química , Enxofre
4.
Sci Total Environ ; 854: 158670, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099952

RESUMO

Biogeochemical markers in combination with bacterial community composition were studied at two contrasting stations at the Río Negro (RN) estuary to assess the outwelling hypothesis in the Argentinian Patagonia. Inorganic nutrients and dissolved organic matter were exported clearly during the last hours of the ebb at the station Wetland. Moreover, a considerable outwelling of polyunsaturated fatty acids (PUFA), particulates and microalgae was inferred by this combined approach. The exported 22:6(n-3) and 20:5(n-3) contributed very likely to sustain higher trophic levels in the coasts of the Southwest Atlantic. The stable isotopes did not evidence clearly the outwelling; nevertheless, the combination of δ13C with fatty acid bacterial markers indicated organic matter degradation in the sediments. The dominance of Desulfobacterales and Desulfuromonadales suggested sulphate reduction in the sediments, a key mechanism for nutrient outwelling in salt marshes. Marivivens and other Rhodobacterales (Alphaproteobacteria) in the suspended particulate matter were clear indicators of the nutrient outwelling. The colonization of particles according to the island biogeography theory was a good hypothesis to explain the lower bacterial biodiversity at the wetland. The copiotrophic conditions of the RN estuary and particularly at the wetland were deduced also by the dynamic of some Actinobacteria, Bacteroidia and Gammaproteobacteria. This high-resolution snapshot combining isotopic, lipid and bacterial markers offers key pioneer insights into biogeochemical and ecological processes of the RN estuary.


Assuntos
Estuários , Isótopos , Áreas Alagadas , Biodiversidade , Lipídeos
5.
Sci Total Environ ; 760: 143942, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348154

RESUMO

As a result of the open-cast lignite mining in the Lusatian region of north-eastern Germany, large amounts of iron, sulphate, trace metals, and aluminium are fed into the groundwater and small streams that discharge into the River Spree, which ultimately flows through urban Berlin. In this study, we examined whether the input of these mining products leads to longitudinal gradients in element compositions and mineral formations in the riverine sediments. The signatures of fluvial and interconnected lacustrine sediments along a 190-km flow section were evaluated via principal component analysis to define the impact range of the open-cast products. These products clearly showed a sediment impact range of at least ~90 km downstream of the mining area. In particular, nickel and cobalt readily co-precipitate with iron, while sedimentary sulphur initially increases and therefore shows a longer impact range than amorphous iron oxy-hydroxides. These findings further demonstrate that sulphur and iron have different transport mechanisms. Although sulphate concentrations in the river waters of Berlin are still high, sedimentary iron and sulphur contents at the city border are only slightly higher than at the reference point close to the source of River Spree. The strongly diminished but still present mining signature in urban Berlin is replaced by an urban signature characterised by high levels of zinc, chromium, lead, and copper.

6.
Water Res ; 189: 116609, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254072

RESUMO

Phosphorus (P) can be retained in mineral association with ferrous iron (Fe) as vivianite, Fe(II)3(PO4)2 ∙ 8 H2O, in lake sediments. The mineral is formed and remains stable under anoxic non-sulphidogenic conditions and, therefore, acts as a long-term P sink. In laboratory experiments under anoxic conditions, we investigated whether P adsorbed to amorphous Fe(III)-hydroxide functioned as a precursor phase of vivianite when added to different sediments as a treatment. The untreated sediments served as controls and were naturally Fe-rich (559 µmol/g DW) and Fe-poor (219 µmol/g DW), respectively. The solid P binding forms analysed by sequential extraction and X-ray diffraction were related to coinciding pore water analyses and the bacterial community compositions of the sediments by bacterial 16S rRNA gene amplicon sequencing. In the treatments, within a period of 40 d, 70 % of the redox-sensitive Fe(III)-P was transformed into redox-stable P, which contained vivianite. The mineral was supersaturated in the pore water, but the presence of Fe(III)-P functioning as a precursor was sufficient for measurable vivianite formation. The composition of the microbial community did not differ significantly (PERMANOVA, p = 0.09) between treatment and control of the naturally Fe-rich sediment. In the naturally Fe-poor sediment, the microbial community changed significantly (PERMANOVA, p = 0.001) in response to the addition of Fe(III)-P to the sediment. The freshly formed redox-stable P was not retransferred to a redox-sensitive compound by aeration for 24 h until 90 % O2 saturation was reached in the sediment slurry. We conclude that 1) Fe(III)-hydroxide bound P, resulting from oxic conditions at the sediment-water interface, is immobilised during anoxic conditions and stable even after re-oxygenation; 2) the process is feasible within the time scales of anoxic lake stratification periods; and 3) in relatively Fe-poor lakes, Fe dosing can provide excess Fe to form the precursor.


Assuntos
Lagos , Poluentes Químicos da Água , Sedimentos Geológicos , Ferro , Laboratórios , Oxirredução , Fósforo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
7.
Sci Rep ; 10(1): 12928, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737370

RESUMO

Vertical mixing modulates nutrient dynamics in lakes. However, surface warming reduces the range of vertical mixing and the probability of full circulation events. Important consequences of reduced vertical mixing include the sequestration of phosphorus (P) within a stagnant zone and the promotion of oligotrophication. Nevertheless, warming-induced shifts from full to partial mixing (meromixis) are not permanent and are partially reversible during exceptionally cold or windy winters. In this study, we investigated how intermittent meromixis affects lake P budgets. We examined the P cycle of a perialpine lake with variable mixing depths by pairing sedimentation and release flux measurements with sedimentary archives. We found that the amount of dissolved P surpassed that of the potentially mobile P in the sediments by a 13:1 ratio. At least 55% of the settled P was rapidly released to bottom waters isolated from flushing, illustrating the general biogeochemical mechanism that promotes deep-water P storage when lakes undergo warming. This storage process is abruptly inverted when meromixis suddenly retreats, deeper mixing introduces P pulses to the surface waters, thereby promoting phytoplankton proliferation. Our estimates showed that lakes containing up to 40% of the global freshwater volume could shift towards intermittent meromixis if the atmospheric warming trend continues. Thus, these lakes might accumulate 0-83% of their P load in irregularly circulating waters and are prone to large P pulses.

9.
Sci Total Environ ; 663: 254-264, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711592

RESUMO

Tube-dwelling macrozoobenthos can affect lake ecosystems in myriad ways, including changes in nutrient fluxes across the sediment-water interface. The pumping activity of chironomid larvae reinforces the transport of solutes between sediment and water. The transport of oxygen into the area surrounding the burrows generates oxidized compounds such as iron(oxy)hydroxides, which results in an additional phosphorus (P) sorption capacity similar to that of oxidized sediment surfaces. In the present study, the effect of the oxidized burrow walls of Chironomus plumosus on P binding capacity and P binding forms was tested in the laboratory using sediments with differing iron contents and varying numbers of chironomid larvae. In an additional long-term experiment, lake sediment naturally rich in iron was incubated under oxic conditions for 165 days, followed by a 3.5-year anoxic period. These experiments showed that: (1) Under oxic conditions the cumulative P uptake by sediments was dependent on larval densities. (2) The P that accumulated both at the sediment-water interface and in the oxidized burrow walls was mainly present as reductive soluble P (iron-bound P). Surprisingly, the amount of P released during the anoxic period in the long-term experiment was independent of the amount of P previously taken up during the oxic period since a portion of P was permanently retained in the sediment. The increase in alkaline soluble metal-bound P (NaOH-SRP) in formerly colonized sediments is a strong indication that the excessive P fixation by reductive soluble iron triggers the subsequent formation of stable iron phosphate minerals such as vivianite. Our study shows that P fixation that is induced by chironomid larvae is not always a completely reversible phenomenon, even after the emergence of the larvae and the re-establishment of anoxic conditions in the sediment.


Assuntos
Chironomidae/metabolismo , Sedimentos Geológicos/química , Lagos/química , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Chironomidae/crescimento & desenvolvimento , Alemanha , Larva/crescimento & desenvolvimento , Larva/metabolismo
10.
Environ Sci Pollut Res Int ; 24(32): 25166-25178, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28924692

RESUMO

Urban surface waters face several stressors associated with industry and urban water management. Over much of the past century, the wastewater treatment in Berlin, Germany, relied on inefficient sewage farms, which resulted in severe eutrophication and sediment contamination in the recipient surface waterbodies. A prominent example is Lake Tegel, where a multitude of management measures were applied in the last decades for the purpose of ecosystem restoration. In this study, we analyzed sediment cores of three lakes with X-ray fluorescence spectroscopy: Lake Tegel, Lake Großer Wannsee, which is environmentally similar but has a different management history, and Lake Userin, which serves as a reference located in a nature protection area. Multivariate statistical methods (principal component analysis, k-means clustering, and self-organizing maps) were used to assess the sediment quality and to reconstruct the management history of Lake Tegel. Principal component analysis established two main gradients of sediment composition: heavy metals and lithogenic elements. The impact of the management measures was visualized in the lake sediment composition changing from high abundance of heavy metals and reducing redox conditions to less-impacted sediments in recent layers. The clustering techniques suggested heterogeneity among sites within Lake Tegel that probably reflect urban water management measures. The abundance of heavy metals in recent lake sediments of Lake Tegel is similar to a lake with low urban impact and is lower than in Lake Großer Wannsee suggesting that the management measures were successful in the reduction of heavy metals, which are still a threat for surface waters worldwide.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Águas Residuárias , Purificação da Água , Berlim , Eutrofização , Sedimentos Geológicos/análise , Alemanha , Lagos/análise , Metais Pesados/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise
11.
Microbiome ; 5(1): 41, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28388930

RESUMO

BACKGROUND: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. METHODS: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. RESULTS: Community ß-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. CONCLUSIONS: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.


Assuntos
Archaea/classificação , Bactérias/classificação , Eucariotos/classificação , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Lagos/microbiologia , Lagos/parasitologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Eucariotos/genética , Eucariotos/isolamento & purificação , Alemanha , Microbiota/genética , Microbiologia da Água
12.
Environ Microbiol Rep ; 9(3): 257-267, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28217926

RESUMO

Dissolved organic matter (DOM) in aquatic ecosystems contains redox-active moieties, which are prone to oxidation and reduction reactions. Oxidized moieties feature reduction potentials Eh , so that the moieties may be used as terminal electron acceptors (TEAs) in microbial respiration with a thermodynamic energy yield between nitrate and sulfate reduction. Here, we study the response of pelagic freshwater bacteria to exposure to native DOM with varying availabilities of oxidized moieties and hence redox state. Our results show that the prevalence of oxidized DOM favors microbial production and growth in anoxic waters. Reduced DOM in stratified lakes may be oxidized when fluctuations of the oxycline expose DOM in previously anoxic water to epilimnetic oxygen. The resulting oxidized DOM may be rapidly used as TEAs in microbial respiration during subsequent periods of anoxia. We further investigate if the prevalence of these organic electron sinks in anaerobic incubations can induce changes in the microbial community. Our results reveal that DOM traversing transient redox interfaces selects for species that profit from such spatially confined and cyclically restored TEA reservoirs.


Assuntos
Anaerobiose/fisiologia , Bactérias/metabolismo , Transporte de Elétrons/fisiologia , Oxirredução , Lagos/análise , Lagos/microbiologia , Nitratos/química , Nitritos/química , Sulfatos/química
13.
Water Res ; 97: 122-32, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26250754

RESUMO

114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment effectiveness. Treatment longevity based on declines in epilimnetic total P (TP) concentration averaged 11 years for all lakes (range of 0-45 years). When longevity estimates were used for lakes with improved conditions through the end of measurements, average longevity increased to 15 years. Significant differences in treatment longevity between deeper, stratified lakes (mean 21 years) and shallow, polymictic lakes (mean 5.7 years) were detected, indicating factors related to lake morphology are important for treatment success. A decision tree developed using a partition model suggested Al dose, Osgood index (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment longevity. Other variables (too data limited to include in the analysis) also appeared to be of importance, including sediment P content to Al dose ratios and the presence of benthic feeding fish in shallow, polymictic lakes.


Assuntos
Lagos , Fósforo , Alumínio , Animais , Longevidade , Qualidade da Água
14.
Environ Sci Pollut Res Int ; 23(7): 6883-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26670030

RESUMO

Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet-dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30% compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet-dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09-0.13 g SRP per m(2) after each wet-dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.


Assuntos
Sedimentos Geológicos/análise , Oxigênio/química , Fósforo/análise , Poluentes Químicos da Água/análise , Brasil , Clima Desértico , Dessecação , Eutrofização , Sedimentos Geológicos/química , Lagos , Magnoliopsida/química , Oxigênio/análise , Fósforo/química , Poluentes Químicos da Água/química , Qualidade da Água
15.
Water Res ; 97: 153-61, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188421

RESUMO

An artificial increase of phosphorus (P) retention in lakes with a long residence time and/or a large mobile sediment P pool by adding P binding chemicals can drastically shorten the time these lakes require to reach water quality targets. Suitable tools to optimize timing and extent of external and internal measures are lacking. The one-box model, a mass balance tool for predicting the P trend in the water under different management options was applied to highly eutrophic Lake Arendsee (a = 5.14 km(2), zmax = 49 m), Germany. Mass developments of blue green algae and increasing hypolimnetic oxygen deficiencies are urgent reasons for restoring Lake Arendsee. Detailed studies of P cycling and scenario analyses with the one-box model led to the following conclusions: i) immediate improvement of the trophic state is only possible by in-lake P inactivation because of the long water residence time (56 years); ii) a gradual external P load reduction, even if the effect is delayed, will assure the sustainability of the scheduled Al application beyond one decade; iii) a twofold precipitation reduces the risk of failure compared to a singular application with an overdose related to the relevant internal P pools.


Assuntos
Lagos , Fósforo , Precipitação Química , Eutrofização , Sedimentos Geológicos , Poluentes Químicos da Água
16.
PLoS One ; 10(11): e0143737, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599406

RESUMO

An increasing number of studies constrain the importance of iron for the long-term retention of phosphorus (P) under anoxic conditions, i.e. the formation of reduced iron phosphate minerals such as vivianite (Fe3(PO4)2⋅8H2O). Much remains unknown about vivianite formation, the factors controlling its occurrence, and its relevance for P burial during early sediment diagenesis. To study the occurrence of vivianite and to assess its relevance for P binding, surface sediments of two hydrologically contrasting waters were analysed by heavy-liquid separation and subsequent powder X-ray diffraction. In Lake Arendsee, vivianite was present in deeper sediment horizons and not in the uppermost layers with a sharp transition between vivianite and non-vivianite bearing layers. In contrast, in lowland river Lower Havel vivianite was present in the upper sediment layers and not in deeper horizons with a gradual transition between non-vivianite and vivianite bearing layers. In both waters, vivianite occurrence was accompanied by the presence of pyrite (FeS2). Vivianite formation was favoured by an elevated iron availability through a lower degree of sulphidisation and was present at a molar ratio of total sulphur to reactive iron smaller than 1.1, only. A longer lasting burden of sediments by organic matter, i.e. due to eutrophication, favours the release of sulphides, and the formation of insoluble iron sulphides leading to a lack of available iron and to less or no vivianite formation. This weakening in sedimentary P retention, representing a negative feedback mechanism (P release) in terms of water quality, could be partly compensated by harmless Fe amendments.


Assuntos
Água Doce/química , Sedimentos Geológicos/análise , Enxofre/análise , Difração de Raios X
17.
Environ Sci Pollut Res Int ; 22(21): 17065-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26122575

RESUMO

Sediment drying associated with large water level fluctuations is an increasingly common feature of temporary streams and lakes worldwide. Drying-induced sediment aeration and re-flooding periodically alter redox conditions, and therefore stimulate redox-sensitive processes influencing phosphorus (P) binding forms. We experimentally tested the effects of drying on P binding forms, and the P sorption potential, by drying and re-flooding lake sediments in the laboratory. Wet and dried fine sediments were re-flooded in columns, and the overlying water was continuously re-stocked to a constant P concentration. We measured changes in P forms, P uptake rates, and the pore water dynamics in each column over 36 weeks. Drying decreased the fraction of stable P, stimulated the mineralization of organic P, and increased the proportion of labile and reductant-soluble forms. Drying of sediment furthermore reduced its P sorption affinity and capacity by up to 32% in batch equilibrium experiments, and led to a fourfold increase in sediment compaction which increased P uptake rates by a factor of 1.7 in sediment column experiments. Compaction due to drying also induced the development of a sharp gradient below which P was mobilized. These results indicate that in fine sediments, a single drying event can result in the transformation of P components into more labile forms which accumulate in the uppermost sediment layer, therefore raising the potential for a pulsed P release under reducing conditions.


Assuntos
Dessecação , Inundações , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise
18.
Water Res ; 47(3): 1491-502, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23276429

RESUMO

Iron salts have been regarded as unsuitable precipitants for sustainable sedimentary P retention, because Fe-bound P is released at low redox potential. The longevity of an Fe(3+) application (500 g m(-2)) in 1992 was studied in a dimictic lake. Release of Fe and P as well as their co-precipitation were observed dependent on artificial aeration in 2010 and only natural oxygenation in 2011. Sediment core stratigraphy by µX-ray fluorescence analysis revealed that Fe is relocating towards the surface, representing a dynamic P trap with a molar Fe:P ratio of 7. Even at this favourable ratio, P release cannot be suppressed. Settling fluxes of Fe, Mn and P, determined by a multi trap at two day resolution, during aeration and oxygenation, showed that released P can be efficiently precipitated independent of the nature of the oxygen supply. Thus, P release is not relevant for the P supply to the epilimnion, since at overturn most P is co-precipitated by the concurrently hypolimnetically accumulated Fe. To increase the availability of reactive (dithionite extractable) Fe for P binding, our Fe dosage calculation considers Fe in surplus. Beside external and internal P sources to be precipitated in a stoichiometric Fe:P ratio of 5, additional Fe equivalents of 25% for sedimentary organic carbon and to bind soluble sulfides are required. A long-term effect can be achieved only if the external P loading is sufficiently reduced, and Fe is added to ≥ 200 g m(-2).


Assuntos
Ferro/química , Lagos , Fósforo/química , Monitoramento Ambiental , Sedimentos Geológicos/química , Oxirredução
19.
J Environ Monit ; 14(3): 1098-106, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22344567

RESUMO

Solution (31)phosphorus NMR spectroscopy and sequential fractionation were used to follow diagenetic changes in phosphorus forms during decomposition of settling seston in Lake Nordborg, a shallow eutrophic lake in Denmark. In a decomposition experiment, seston released >60% of their total phosphorus during ~50 days incubation, although seston collected during summer contained more phosphorus and released it over a longer period compared to seston collected during spring. Seston decomposition increased concentrations of potentially bioavailable polyphosphate and phosphodiesters, but also promoted the formation of refractory phosphorus forms that might be buried permanently in the sediment. Combining these results with in situ measurements of phosphorus concentrations in lake water and sediment traps revealed that the release from settling seston plays only a minor role in the accumulation of phosphorus in the hypolimnion of Lake Nordborg.


Assuntos
Fósforo/análise , Poluentes Químicos da Água/análise , Dinamarca , Monitoramento Ambiental , Lagos/química , Espectroscopia de Ressonância Magnética , Fósforo/química , Poluentes Químicos da Água/química
20.
Appl Environ Microbiol ; 74(13): 4231-5, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18456855

RESUMO

Our novel approach for taxonomic identification of uncultured bacteria harboring specific physiological features in complex environmental samples combines cell collection by laser microdissection and subsequent DNA analysis. The newly developed approach was successfully tested for collection and phylogenetic characterization of polyphosphate-accumulating bacteria in activated sludge and lake sediment.


Assuntos
Bactérias/genética , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Lasers , Filogenia , Polifosfatos/metabolismo , Esgotos/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Dissecação , Genes de RNAr , Microscopia , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...