Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(Suppl 11): 949, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31856731

RESUMO

BACKGROUND: Recently, a number of studies have been conducted to investigate how plants respond to stress at the cellular molecular level by measuring gene expression profiles over time. As a result, a set of time-series gene expression data for the stress response are available in databases. With the data, an integrated analysis of multiple stresses is possible, which identifies stress-responsive genes with higher specificity because considering multiple stress can capture the effect of interference between stresses. To analyze such data, a machine learning model needs to be built. RESULTS: In this study, we developed StressGenePred, a neural network-based machine learning method, to integrate time-series transcriptome data of multiple stress types. StressGenePred is designed to detect single stress-specific biomarker genes by using a simple feature embedding method, a twin neural network model, and Confident Multiple Choice Learning (CMCL) loss. The twin neural network model consists of a biomarker gene discovery and a stress type prediction model that share the same logical layer to reduce training complexity. The CMCL loss is used to make the twin model select biomarker genes that respond specifically to a single stress. In experiments using Arabidopsis gene expression data for four major environmental stresses, such as heat, cold, salt, and drought, StressGenePred classified the types of stress more accurately than the limma feature embedding method and the support vector machine and random forest classification methods. In addition, StressGenePred discovered known stress-related genes with higher specificity than the Fisher method. CONCLUSIONS: StressGenePred is a machine learning method for identifying stress-related genes and predicting stress types for an integrated analysis of multiple stress time-series transcriptome data. This method can be used to other phenotype-gene associated studies.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Modelos Biológicos , Redes Neurais de Computação , Estresse Fisiológico/genética , Biologia Computacional , Perfilação da Expressão Gênica , Estudos de Associação Genética , Aprendizado de Máquina , Fenótipo , Transcriptoma
2.
Front Plant Sci ; 10: 698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258543

RESUMO

Transcription factor (TF) has a significant influence on the state of a cell by regulating multiple down-stream genes. Thus, experimental and computational biologists have made great efforts to construct TF gene networks for regulatory interactions between TFs and their target genes. Now, an important research question is how to utilize TF networks to investigate the response of a plant to stress at the transcription control level using time-series transcriptome data. In this article, we present a new computational network, PropaNet, to investigate dynamics of TF networks from time-series transcriptome data using two state-of-the-art network analysis techniques, influence maximization and network propagation. PropaNet uses the influence maximization technique to produce a ranked list of TFs, in the order of TF that explains differentially expressed genes (DEGs) better at each time point. Then, a network propagation technique is used to select a group of TFs that explains DEGs best as a whole. For the analysis of Arabidopsis time series datasets from AtGenExpress, we used PlantRegMap as a template TF network and performed PropaNet analysis to investigate transcriptional dynamics of Arabidopsis under cold and heat stress. The time varying TF networks showed that Arabidopsis responded to cold and heat stress quite differently. For cold stress, bHLH and bZIP type TFs were the first responding TFs and the cold signal influenced histone variants, various genes involved in cell architecture, osmosis and restructuring of cells. However, the consequences of plants under heat stress were up-regulation of genes related to accelerating differentiation and starting re-differentiation. In terms of energy metabolism, plants under heat stress show elevated metabolic process and resulting in an exhausted status. We believe that PropaNet will be useful for the construction of condition-specific time-varying TF network for time-series data analysis in response to stress. PropaNet is available at http://biohealth.snu.ac.kr/software/PropaNet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...