Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2401494, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889336

RESUMO

Wireless energy transfer (WET) based on ultrasound-driven generators with enormous beneficial functions, is technologically in progress by the valuation of ultrasonic metamaterials (UMMs) in science and engineering domains. Indeed, novel metamaterial structures can develop the efficiency of mechanical and physical features of ultrasound energy receivers (US-ETs), including ultrasound-driven piezoelectric and triboelectric nanogenerators (US-PENGs and US-TENGs) for advantageous applications. This review article first summarizes the fundamentals, classification, and design engineering of UMMs after introducing ultrasound energy for WET technology. In addition to addressing using UMMs, the topical progress of innovative UMMs in US-ETs is conceptually presented. Moreover, the advanced approaches of metamaterials are reported in the categorized applications of US-PENGs and US-TENGs. Finally, some current perspectives and encounters of UMMs in US-ETs are offered. With this objective in mind, this review explores the potential revolution of reliable integrated energy transfer systems through the transformation of metamaterials into ultrasound-driven active mediums for generators.

2.
Adv Sci (Weinh) ; 10(17): e2301002, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37083256

RESUMO

2D transition metal dichalcogenides (TMDs) have significant research interests in various novel applications due to their intriguing physicochemical properties. Notably, one of the 2D TMDs, SnS2 , has superior chemiresistive sensing properties, including a planar crystal structure, a large surface-to-volume ratio, and a low electronic noise. However, the long-term stability of SnS2 in humid conditions remains a critical shortcoming towards a significant degradation of sensitivity. Herein, it is demonstrated that the subsequent self-assembly of zeolite imidazolate framework (ZIF-8) can be achieved in situ growing on SnS2 nanoflakes as the homogeneous porous materials. ZIF-8 layer on SnS2 allows the selective diffusion of target gas species, while effectively preventing the SnS2 from severe oxidative degradation. Molecular modeling such as molecular dynamic simulation and DFT calculation, further supports the mechanism of sensing stability and selectivity. From the results, the in situ grown ZIF-8 porous membrane on 2D materials corroborates the generalizable strategy for durable and reliable high-performance electronic applications of 2D materials.

3.
Adv Sci (Weinh) ; 10(3): e2205179, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442861

RESUMO

An innovative autonomous resonance-tuning (ART) energy harvester is reported that utilizes adaptive clamping systems driven by intrinsic mechanical mechanisms without outsourcing additional energy. The adaptive clamping system modulates the natural frequency of the harvester's main beam (MB) by adjusting the clamping position of the MB. The pulling force induced by the resonance vibration of the tuning beam (TB) provides the driving force for operating the adaptive clamp. The ART mechanism is possible by matching the natural frequencies of the TB and clamped MB. Detailed evaluations are conducted on the optimization of the adaptive clamp tolerance and TB design to increase the pulling force. The energy harvester exhibits an ultrawide resonance bandwidth of over 30 Hz in the commonly accessible low vibration frequency range (<100 Hz) owing to the ART function. The practical feasibility is demonstrated by evaluating the ART performance under both frequency and acceleration-variant conditions and powering a location tracking sensor.

4.
ACS Appl Mater Interfaces ; 14(39): 44550-44560, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149315

RESUMO

The switching characteristics and performance of oxide-based memristors are predominately determined by oxygen- or oxygen-vacancy-mediated redox reactions and the consequent formation of conducting filaments (CFs). Devices using oxide thin films as the switching layer usually require an electroforming process for subsequent switching operations, which induces large device-to-device variations. In addition, the hard-to-control redox reaction during repeated switching causes random fluctuations or degradation of each resistance state, hindering reliable switching operations. In this study, an HfO2 nanorod (NR)-based memristor is proposed for simultaneously achieving highly uniform, electroforming-free, fast, and reliable analogue switching properties. The well-controlled redox reaction due to the easy gas exchange with the environment at the surface of the NRs enhances the generation of oxygen or oxygen vacancies during the switching operation, resulting in electroforming-free and reliable switching behavior. In addition, the one-dimensional surface growth of CFs facilitates highly linear conductance modulation with smaller conductance changes compared with the two-dimensional volume growth in thin-film-based memristors, resulting in a high accuracy of >92% in the Modified National Institute of Standards and Technology pattern-recognition test and desirable spike-timing-dependent plasticity.

5.
Small ; 17(14): e2007289, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705597

RESUMO

While piezoelectric nanogenerators have demonstrated the effective conversion of tiny mechanical vibrations to electricity, their performances are rarely examined under harsh environmental conditions. Here, a multilayered polyvinylidene fluoride (PVDF) film-based piezoelectric nanogenerator (ML-PENG) is demonstrated to generate considerable and stable power outputs even at extremely low temperatures and pressures, and under strong UV. Up-/down-polarized PVDF films are alternately stacked, and Ag electrodes are intercalated between the two adjacent films. At -266 °C and 10-5  Torr, the ML-PENG generates an open-circuit voltage of 1.1 V, a short-circuit current density of 8 nA cm-2 , and a power density of 4.4 nW cm-2 . The piezoelectric outputs are quite stable against prolonged illumination of UV, large temperature- and pressure-variations, and excessive mechanical vibrations. The piezoelectric power density is greatly enhanced above the freezing and glass transition temperatures of PVDF and recorded to be 10, 105, and 282 nW cm-2 at -73, 0, and 77 °C, respectively. The ML-PENG generates sufficient power to operate five light-emitting diodes by harvesting biomechanical energy under simulated Martian conditions. This work suggests that polarization- and electrode-optimized ML-PENG can serve as a reliable and economic power source in harsh and inaccessible environments like polar areas of Earth and extraterrestrial Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Eletrodos , Polivinil
6.
Nat Commun ; 11(1): 2983, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532993

RESUMO

Calorimetry has been widely used in metabolic studies, but direct measurements from individual small biological model organisms such as C. elegans or isolated single cells have been limited by poor sensitivity of existing techniques and difficulties in resolving very small heat outputs. Here, by careful thermal engineering, we developed a robust, highly sensitive and bio-compatible calorimetric platform that features a resolution of ~270 pW-more than a 500-fold improvement over the most sensitive calorimeter previously used for measuring the metabolic heat output of C. elegans. Using this calorimeter, we demonstrate time-resolved metabolic measurements of single C. elegans worms from larval to adult stages. Further, we show that the metabolic output is significantly lower in long-lived C. elegans daf-2 mutants. These demonstrations clearly highlight the broad potential of this tool for studying the role of metabolism in disease, development and aging of small model organisms and single cells.


Assuntos
Caenorhabditis elegans/metabolismo , Calorimetria/métodos , Análise de Célula Única/métodos , Temperatura , Animais , Metabolismo Basal/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calorimetria/instrumentação , Metabolismo Energético/genética , Humanos , Larva/citologia , Larva/genética , Larva/metabolismo , Longevidade/genética , Modelos Animais , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única/instrumentação , Condutividade Térmica
7.
Nature ; 572(7771): 628-633, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31315129

RESUMO

Single-molecule junctions have been extensively used to probe properties as diverse as electrical conduction1-3, light emission4, thermoelectric energy conversion5,6, quantum interference7,8, heat dissipation9,10 and electronic noise11 at atomic and molecular scales. However, a key quantity of current interest-the thermal conductance of single-molecule junctions-has not yet been directly experimentally determined, owing to the challenge of detecting minute heat currents at the picowatt level. Here we show that picowatt-resolution scanning probes previously developed to study the thermal conductance of single-metal-atom junctions12, when used in conjunction with a time-averaging measurement scheme to increase the signal-to-noise ratio, also allow quantification of the much lower thermal conductance of single-molecule junctions. Our experiments on prototypical Au-alkanedithiol-Au junctions containing two to ten carbon atoms confirm that thermal conductance is to a first approximation independent of molecular length, consistent with detailed ab initio simulations. We anticipate that our approach will enable systematic exploration of thermal transport in many other one-dimensional systems, such as short molecules and polymer chains, for which computational predictions of thermal conductance13-16 have remained experimentally inaccessible.

8.
Science ; 355(6330): 1192-1195, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209640

RESUMO

Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.

9.
Bioinspir Biomim ; 11(3): 036006, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27127192

RESUMO

This study investigated the effect of the serial connection of two pumping chambers on transport of liquid with increased viscosity. A serially connected valveless piezoelectric micropump was fabricated inspired by the liquid-feeding strategy of a female mosquito drinking liquid with a wide range of viscosities, from nectar to blood. The performance of the micropump was investigated by varying the viscosity of working liquid. Results showed that the optimal phase difference between the two chambers was 180° out-of-phase for all viscosity conditions. The two chambers operating at 180° out-of-phase exhibited higher pumping performance compared with the sum of each single chamber solely actuated, when viscosity increased. The flow patterns in the micropump showed that the rectification efficiency improved with the increase in viscosity. Results indicated that the serially connected valveless piezoelectric micropump is more robust to the increase of viscosity than a single-chamber piezoelectric micropump. This study would be helpful in the design of microfluidic devices for transporting liquids with a wide range of viscosities.


Assuntos
Biomimética/instrumentação , Culicidae/fisiologia , Ingestão de Líquidos/fisiologia , Bombas de Infusão , Sistemas Microeletromecânicos/instrumentação , Microfluídica/instrumentação , Animais , Biomimética/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Hidrodinâmica , Vibração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...