Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 57(3): 877-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26978024

RESUMO

PURPOSE: Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. METHODS: The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. RESULTS: New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. CONCLUSIONS: The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.


Assuntos
DNA/genética , Modelos Animais de Doenças , Mutação , Proteína Quinase C-delta/genética , Descolamento Retiniano/patologia , Epitélio Pigmentado da Retina/patologia , Animais , Atrofia , Western Blotting , Análise Mutacional de DNA , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Fotorreceptoras de Vertebrados , Proteína Quinase C-delta/metabolismo , Descolamento Retiniano/enzimologia , Descolamento Retiniano/genética , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência Óptica
2.
Invest Ophthalmol Vis Sci ; 56(6): 3776-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26066746

RESUMO

PURPOSE: The purpose of this study was to identify the molecular basis and characterize the pathological consequences of a spontaneous mutation named cone photoreceptor function loss 8 (cpfl8) in a mouse model with a significantly reduced cone electroretinography (ERG) response. METHODS: The chromosomal position for the recessive cpfl8 mutation was determined by DNA pooling and by subsequent genotyping with simple sequence length polymorphic markers in an F2 intercross phenotyped by ERG. Genes within the candidate region of both mutants and controls were directly sequenced and compared. The effects of the mutation were examined in longitudinal studies by light microscopy, marker analysis, transmission electron microscopy, and ERG. RESULTS: The cpfl8 mutation was mapped to Chromosome 12, and a premature stop codon was identified in the spectrin repeat containing nuclear envelope 2 (Syne2) gene. The reduced cone ERG response was due to a significant reduction in cone photoreceptors. Longitudinal studies of the early postnatal retina indicated that the cone photoreceptors fail to develop properly, rod photoreceptors mislocalize to the inner nuclear layer, and both rods and cones undergo apoptosis prematurely. Moreover, we observed migration defects of secondary neurons and ectopic Müller cell bodies in the outer nuclear layer in early postnatal development. CONCLUSIONS: SYNE2 is important for normal retinal development. We have determined that not only is photoreceptor nuclear migration affected, but also the positions of Müller glia and secondary neurons are disturbed early in retinal development. The cpfl8 mouse model will serve as an important resource for further examining the role of nuclear scaffolding and migration in the developing retina.


Assuntos
Mutação , Proteínas do Tecido Nervoso/genética , Neuroglia/patologia , Neurônios/patologia , Proteínas Nucleares/genética , Células Fotorreceptoras/patologia , Retina/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
3.
Invest Ophthalmol Vis Sci ; 55(6): 3709-19, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24845632

RESUMO

PURPOSE: Characterization of a mouse model of spontaneous choroidal neovascularization (sCNV) and its effect on retinal architecture and function. METHODS: The sCNV mouse phenotype was characterized by using fundus photography, fluorescein angiography, confocal scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), ERG, immunostaining, biochemistry, and electron microscopy. A role for VEGF-A signaling in sCNV was investigated by using neutralizing antibodies and a role for macrophages explored by cell-depletion studies. RESULTS: The sCNV starts between postnatal day 10 and 15 (P10-P15), increasing in number and severity causing RPE disruption and dysfunction. Various morphological methods confirmed the choroidal origin and subretinal position of the angiogenic vessels. At approximately P25, vessels were present in the outer retina with instances of anastomosis of some sCNV lesions with the retinal vasculature. The number of CNV lesions was significantly decreased by systemic blockade of the VEGF-A pathway. Choroidal neovascularization size also was significantly modulated by reducing the number of lesion-associated macrophages. Later stages of sCNV were associated with edema, neuronal loss, and dysfunction. CONCLUSIONS: The sCNV mouse is a new model for the study of both early and late events associated with choroidal neovascularization. Pharmacological reduction in sCNV with VEGF-A antagonists and an anti-inflammatory strategy suggests the model may be useful for investigating novel targets for treating human ocular neovascular disease.


Assuntos
Corioide/irrigação sanguínea , Neovascularização de Coroide/metabolismo , Edema/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Corioide/ultraestrutura , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Edema/patologia , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Angiofluoresceinografia , Fundo de Olho , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Microscopia Eletrônica , Oftalmoscopia , Fenótipo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Vasos Retinianos/metabolismo , Vasos Retinianos/ultraestrutura , Transdução de Sinais , Tomografia de Coerência Óptica
4.
Invest Ophthalmol Vis Sci ; 54(7): 4974-81, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23800770

RESUMO

PURPOSE: As in human populations, in which founder mutations have been identified in groups of families, a number of founder mutations have been observed across strains in mice. In this report, we provide a phenotype and genotype survey of three common eye diseases in the collection of JAX mice strains at The Jackson Laboratory (JAX). These eye diseases are retinal degeneration 1 (Pde6b(rd1)), retinal degeneration 8 (Crb1(rd8)), and cone photoreceptor function loss 3 (Gnat2(cpfl3)). METHODS: Ocular lesions for rd1 and rd8 were evaluated by fundus examination and fundus photography, and the abnormal retinal function observed in mice homozygous for cpfl3 was assessed by ERG. Genotyping protocols for rd1, rd8, and cpfl3 mutations were performed by PCR with appropriate primers. RESULTS: We have actively screened retired breeders for surface dysmorphologies, and for intraocular defects by indirect ophthalmoscopy, slit-lamp biomicroscopy, and ERG to discover new spontaneous mutations in strains from the Genetic Resource Science (GRS) production colony. Through this process, we have found that of the strains screened, 99 strains carried the rd1 mutation, 85 strains carried the rd8 mutation, and 20 strains carried the cpfl3 mutation. CONCLUSIONS: Of the 1000 of strains screened during this study, 204 carried one of three founder mutations in Pde6b, Crb1, or Gnat2. Since these three retinal mutations occur commonly in various mouse strains, genotyping for these mutations, and/or avoiding mouse strains or stocks carrying these mutant alleles when studying new retinal disorders is recommended. The robust PCR genotyping protocols to test for these common alleles are described herein.


Assuntos
Mutação , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/genética , Animais , Animais de Laboratório , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Modelos Animais de Doenças , Eletrorretinografia , Genótipo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Camundongos , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/genética , Fenótipo , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia
5.
J Clin Invest ; 121(6): 2169-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21606596

RESUMO

The mutations that cause Leber congenital amaurosis (LCA) lead to photoreceptor cell death at an early age, causing childhood blindness. To unravel the molecular basis of LCA, we analyzed how mutations in LCA5 affect the connectivity of the encoded protein lebercilin at the interactome level. In photoreceptors, lebercilin is uniquely localized at the cilium that bridges the inner and outer segments. Using a generally applicable affinity proteomics approach, we showed that lebercilin specifically interacted with the intraflagellar transport (IFT) machinery in HEK293T cells. This interaction disappeared when 2 human LCA-associated lebercilin mutations were introduced, implicating a specific disruption of IFT-dependent protein transport, an evolutionarily conserved basic mechanism found in all cilia. Lca5 inactivation in mice led to partial displacement of opsins and light-induced translocation of arrestin from photoreceptor outer segments. This was consistent with a defect in IFT at the connecting cilium, leading to failure of proper outer segment formation and subsequent photoreceptor degeneration. These data suggest that lebercilin functions as an integral element of selective protein transport through photoreceptor cilia and provide a molecular demonstration that disrupted IFT can lead to LCA.


Assuntos
Proteínas do Olho/fisiologia , Amaurose Congênita de Leber/fisiopatologia , Proteínas Associadas aos Microtúbulos/fisiologia , Cílio Conector dos Fotorreceptores/fisiologia , Transporte Proteico/fisiologia , Animais , Arrestinas/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Proteínas do Olho/genética , Humanos , Amaurose Congênita de Leber/genética , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos , Opsinas/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/fisiologia , Segmento Externo da Célula Bastonete/metabolismo , Segmento Externo da Célula Bastonete/patologia , Visão Ocular/fisiologia
6.
Proc Natl Acad Sci U S A ; 107(35): 15523-8, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713727

RESUMO

Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420-421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14-20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Sequência de Bases , Northern Blotting , Cromatografia Líquida de Alta Pressão , Mapeamento Cromossômico , Análise Mutacional de DNA , Humanos , Immunoblotting , Amaurose Congênita de Leber/genética , Lipídeos/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Fosfatidilcolinas/análise , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/ultraestrutura , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Proc Natl Acad Sci U S A ; 106(46): 19581-6, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19887631

RESUMO

Retinal cone photoreceptors mediate fine visual acuity, daylight vision, and color vision. Congenital hereditary conditions in which there is a lack of cone function in humans cause achromatopsia, an autosomal recessive trait, characterized by low vision, photophobia, and lack of color discrimination. Herein we report the identification of mutations in the PDE6C gene encoding the catalytic subunit of the cone photoreceptor phosphodiesterase as a cause of autosomal recessive achromatopsia. Moreover, we show that the spontaneous mouse mutant cpfl1 that features a lack of cone function and rapid degeneration of the cone photoreceptors represents a homologous mouse model for PDE6C associated achromatopsia.


Assuntos
Defeitos da Visão Cromática/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Proteínas do Olho/genética , Mutação de Sentido Incorreto , Animais , Mapeamento Cromossômico , Análise Mutacional de DNA , Humanos , Camundongos , Camundongos Mutantes , Splicing de RNA
8.
J Physiol ; 586(18): 4409-24, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18687716

RESUMO

An electroretinogram (ERG) screen identified a mouse with a normal a-wave but lacking a b-wave, and as such it was designated no b-wave3 (nob3). The nob3 phenotype mapped to chromosome 11 in a region containing the metabotropic glutamate receptor 6 gene (Grm6). Sequence analyses of cDNA identified a splicing error in Grm6, introducing an insertion and an early stop codon into the mRNA of affected mice (designated Grm6(nob3)). Immunohistochemistry of the Grm6(nob3) retina showed that GRM6 was absent. The ERG and visual behaviour abnormalities of Grm6(nob3) mice are similar to Grm6(nob4) animals, and similar deficits were seen in compound heterozygotes (Grm6(nob4/nob3)), indicating that Grm6(nob3) is allelic to Grm6(nob4). Visual responses of Grm6(nob3) retinal ganglion cells (RGCs) to light onset were abnormal. Grm6(nob3) ON RGCs were rarely recorded, but when they were, had ill-defined receptive field (RF) centres and delayed onset latencies. When Grm6(nob3) OFF-centre RGC responses were evoked by full-field stimulation, significantly fewer converted that response to OFF/ON compared to Grm6(nob4) RGCs. Grm6(nob4/nob3) RGC responses verified the conclusion that the two mutants are allelic. We propose that Grm6(nob3) is a new model of human autosomal recessive congenital stationary night blindness. However, an allelic difference between Grm6(nob3) and Grm6(nob4) creates a disparity in inner retinal processing. Because the localization of GRM6 is limited to bipolar cells in the On pathway, the observed difference between RGCs in these mutants is likely to arise from differences in their inputs.


Assuntos
Receptores de Glutamato Metabotrópico/genética , Células Ganglionares da Retina/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Eletrorretinografia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação , Estimulação Luminosa , Receptores de Glutamato Metabotrópico/metabolismo , Retina/anatomia & histologia , Retina/metabolismo , Análise de Sequência de DNA , Campos Visuais
9.
Mamm Genome ; 19(3): 145-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18286335

RESUMO

The retinal degeneration 7 (rd7) mouse, lacking expression of the Nr2e3 gene, exhibits retinal dysplasia and a slow, progressive degeneration due to an abnormal production of blue opsin-expressing cone cells. In this study we evaluated three strains of mice to identify alleles that would slow or ameliorate the retinal degeneration observed in Nr2e3 (rd7/rd7) mice. Our studies reveal that genetic background greatly influences the expression of the Nr2e3 (rd7/rd7) phenotype and that the inbred mouse strains CAST/EiJ, AKR/J, and NOD.NON-H2 (nb1) carry alleles that confer resistance to Nr2e3 (rd7/rd7)-induced retinal degeneration. B6.Cg-Nr2e3 (rd7/rd7) mice were outcrossed to each strain and the F(1) progeny were intercrossed to produce F(2) mice. In each intercross, 20-24% of the total F(2) progeny were homozygous for the Nr2e3 (rd7/rd7) mutation in a mixed genetic background; approximately 28-48% of the Nr2e3 (rd7/rd7) homozygotes were suppressed for the degenerative retina phenotype in a mixed genetic background. The suppressed mice had no retinal spots and normal retinal morphology with a normal complement of blue opsin-expressing cone cells. An initial genome scan revealed a significant association of the suppressed phenotype with loci on chromosomes 8 and 19 with the CAST/EiJ background, two marginal loci on chromosomes 7 and 11 with the AKR/J background, and no significant QTL with the NOD.NON-H2 (nb1) background. We did not observe any significant epistatic effects in this study. Our results suggest that there are several genes that are likely to act in the same or parallel pathway as NR2E3 that can rescue the Nr2e3 (rd7/rd7) phenotype and may serve as potential therapeutic targets.


Assuntos
Receptores Citoplasmáticos e Nucleares/genética , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Animais , Cruzamentos Genéticos , Epistasia Genética , Camundongos , Mutação , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/metabolismo , Degeneração Retiniana/patologia , Especificidade da Espécie
10.
Hum Mol Genet ; 15(11): 1847-57, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16632484

RESUMO

Centrosome- and cilia-associated proteins play crucial roles in establishing polarity and regulating intracellular transport in post-mitotic cells. Using genetic mapping and positional candidate strategy, we have identified an in-frame deletion in a novel centrosomal protein CEP290 (also called NPHP6), leading to early-onset retinal degeneration in a newly identified mouse mutant, rd16. We demonstrate that CEP290 localizes primarily to centrosomes of dividing cells and to the connecting cilium of retinal photoreceptors. We show that, in the retina, CEP290 associates with several microtubule-based transport proteins including RPGR, which is mutated in approximately 15% of patients with retinitis pigmentosa. A truncated CEP290 protein (DeltaCEP290) is detected in the rd16 retina, but in considerably reduced amounts; however, the mutant protein exhibits stronger association with specific RPGR isoform(s). Immunogold labeling studies demonstrate the redistribution of RPGR and of phototransduction proteins in the photoreceptors of rd16 retina. Our findings suggest a critical function for CEP290 in ciliary transport and provide insights into the mechanism of early-onset photoreceptor degeneration.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Proteínas de Transporte/metabolismo , Centrossomo/ultraestrutura , Proteínas do Olho/genética , Deleção de Genes , Proteínas Nucleares/genética , Degeneração Retiniana/genética , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Centrossomo/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Humanos , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/fisiologia , Ligação Proteica
11.
Invest Ophthalmol Vis Sci ; 47(3): 1201-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16505059

RESUMO

PURPOSE: Viable motheaten mutant mice (abbreviated allele symbol me(v)) are deficient in Src-homology 2-domain phosphatase (SHP)-1, a critical negative regulator of signal transduction in hematopoietic cells. These mice exhibit immune dysfunction, hyperproliferation of myeloid cells, and regenerative anemia. This study focused on the role of SHP-1 in retinal homeostasis. METHODS: Ophthalmoscopy, histology, transmission electron microscopy (TEM), electroretinography (ERG), immunohistochemistry, Western blot, bone marrow transplantation, and genetic crosses were performed for phenotypic characterization and functional studies of retinal degeneration (RD) in me(v)/me(v) mice. RESULTS: Fundus examinations of me(v)/me(v) mice revealed numerous, small white spots. Histologic examination demonstrated photoreceptor loss beginning at 3 weeks of age, and TEM revealed disorganization and reduction in the number of outer segments, as well as the presence of phagocytic cells in the subretinal space. Rod- and cone-mediated ERGs were abnormal. SHP-1 protein was expressed in mouse and human retinal lysates and was localized to the outer nuclear layer of the retina in me(v)/me(v) and control mice. Autoantibodies are not necessary for RD, as B-cell-deficient me(v)/me(v) Igh-6(tm1Cgn) mice had no attenuation of photoreceptor cell loss compared with age-matched me(v)/me(v) mice. Histologic examination of lungs and retinas from normal recipients of me(v)/me(v) marrow revealed the classic acidophilic macrophage pneumonia of me(v)/me(v) mice, but no retinal degeneration. CONCLUSIONS: me(v)/me(v) mice exhibit normal retinal development with the onset of RD at 3 weeks of age and a rapidly progressive loss of photoreceptors. These findings support the hypothesis that SHP-1 plays a critical role in retinal homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Tirosina Fosfatases/deficiência , Degeneração Retiniana/enzimologia , Animais , Apoptose , Western Blotting , Transplante de Medula Óssea , Cruzamentos Genéticos , Eletrorretinografia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Oftalmoscopia , Células Fotorreceptoras de Vertebrados/enzimologia , Células Fotorreceptoras de Vertebrados/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Degeneração Retiniana/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...