Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(1): e1010610, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696418

RESUMO

Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.


Assuntos
Proteínas de Drosophila , Animais , Feminino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Bicamadas Lipídicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células Germinativas/metabolismo , Drosophila/metabolismo , Diferenciação Celular/genética
2.
Dev Cell ; 39(5): 560-571, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27923120

RESUMO

Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos , Genes Mitocondriais/genética , Actinas/metabolismo , Animais , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Células Germinativas Embrionárias/metabolismo , Feminino , Humanos , Oogênese/genética , Isoformas de Proteínas/genética
3.
PLoS Genet ; 12(8): e1006285, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27564704

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1005625.].

4.
PLoS Genet ; 11(11): e1005625, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26587980

RESUMO

Curly, described almost a century ago, is one of the most frequently used markers in Drosophila genetics. Despite this the molecular identity of Curly has remained obscure. Here we show that Curly mutations arise in the gene dual oxidase (duox), which encodes a reactive oxygen species (ROS) generating NADPH oxidase. Using Curly mutations and RNA interference (RNAi), we demonstrate that Duox autonomously stabilizes the wing on the last day of pupal development. Through genetic suppression studies, we identify a novel heme peroxidase, Curly Su (Cysu) that acts with Duox to form the wing. Ultrastructural analysis suggests that Duox and Cysu are required in the wing to bond and adhere the dorsal and ventral cuticle surfaces during its maturation. In Drosophila, Duox is best known for its role in the killing of pathogens by generating bactericidal ROS. Our work adds to a growing number of studies suggesting that Duox's primary function is more structural, helping to form extracellular and cuticle structures in conjunction with peroxidases.


Assuntos
Heme/metabolismo , Oxirredutases/genética , Peroxidases/metabolismo , Asas de Animais/enzimologia , Sequência de Aminoácidos , Animais , Drosophila , Humanos , Dados de Sequência Molecular , Mutação , Oxirredutases/química , Oxirredutases/metabolismo , Homologia de Sequência de Aminoácidos
5.
Methods Enzymol ; 528: 197-215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23849867

RESUMO

Under normal physiological conditions, cells use oxidants, particularly H2O2, for signal transduction during processes such as proliferation and migration. Though recent progress has been made in determining the precise role H2O2 plays in these processes, many gaps still remain. To further understand this, we describe the use of a dominant enhancer screen to identify novel components of a redox-regulated cell migration and adhesion pathway in Drosophila melanogaster. Here, we discuss our methodology and progress as well as the benefits and limitations of applying such an approach to study redox-regulated pathways. Depending on the nature of these pathways, unbiased genetic modifier screens may prove a productive way to identify novel redox-regulated signaling components.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Modificadores , Células Germinativas/metabolismo , Mutação , Peroxidases/genética , Animais , Adesão Celular , Movimento Celular , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero , Células Germinativas/citologia , Oxirredução , Peroxidases/metabolismo , Transdução de Sinais
6.
Trends Cell Biol ; 22(2): 107-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22209517

RESUMO

Reactive oxygen species (ROS), particularly hydrogen peroxide, and the proteins that regulate them play important roles in the migration and adhesion of cells. Stimulation of cell surface receptors with growth factors and chemoattractants generates ROS, which relay signals from the cell surface to key signaling proteins inside the cell. ROS act within cells to promote migration and also in nonmigrating cells to influence the behavior of migrating cells. Hydrogen peroxide has also been suggested to act as a chemoattractant in its own right, drawing immune cells to wounds. We discuss recent progress made towards understanding how organisms use ROS, and to what degree they depend on them, during the related processes of cell migration and adhesion.


Assuntos
Movimento Celular , Animais , Adesão Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução
7.
Dev Cell ; 20(2): 233-43, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21316590

RESUMO

Regulated adhesion between cells and their environment is critical for normal cell migration. We have identified mutations in a gene encoding the Drosophila hydrogen peroxide (H2O2)-degrading enzyme Jafrac1, which lead to germ cell adhesion defects. During gastrulation, primordial germ cells (PGCs) associate tightly with the invaginating midgut primordium as it enters the embryo; however, in embryos from jafrac1 mutant mothers this association is disrupted, leaving some PGCs trailing on the outside of the embryo. We observed similar phenotypes in embryos from DE-cadherin/shotgun (shg) mutant mothers and were able to rescue the jafrac1 phenotype by increasing DE-cadherin levels. This and our biochemical evidence strongly suggest that Jafrac1-mediated reduction of H2O2 is required to maintain DE-cadherin protein levels in the early embryo. Our results present in vivo evidence of a peroxiredoxin regulating DE-cadherin-mediated adhesion.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Células Germinativas/citologia , Células Germinativas/enzimologia , Peroxidases/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Caderinas/genética , Adesão Celular/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Endocitose/efeitos dos fármacos , Gastrulação/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...