Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 34(11): 5000-5008, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722203

RESUMO

We report the synthesis, crystal structure, thermal response, and electrochemical behavior of the Prussian blue analogue (PBA) K2Cu[Fe(CN)6]. From a structural perspective, this is the most complex PBA yet characterized: its triclinic crystal structure results from an interplay of cooperative Jahn-Teller order, octahedral tilts, and a collective "slide" distortion involving K-ion displacements. These different distortions give rise to two crystallographically distinct K-ion channels with different mobilities. Variable-temperature X-ray powder diffraction measurements show that K-ion slides are the lowest-energy distortion mechanism at play, as they are the only distortion to be switched off with increasing temperature. Electrochemically, the material operates as a K-ion cathode with a high operating voltage and an improved initial capacity relative to higher-vacancy PBA alternatives. On charging, K+ ions are selectively removed from a single K-ion channel type, and the slide distortions are again switched on and off accordingly. We discuss the functional importance of various aspects of structural complexity in this system, placing our discussion in the context of other related PBAs.

2.
ACS Catal ; 12(5): 3173-3180, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35558899

RESUMO

Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation is poorly understood. In this work, we present a mechanistic study of platinum SSCs using operando, synchrotron-X-ray absorption spectroscopy. We synthesize an atomically dispersed platinum complex with aniline and chloride ligands onto graphene and characterize it with ex-situ electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure spectroscopy (XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS). Then, by operando EXAFS and XANES, we show that as a negatively biased potential is applied, the Pt-N bonds break first followed by the Pt-Cl bonds. The platinum is reduced from platinum(II) to metallic platinum(0) by the onset of the hydrogen-evolution reaction at 0 V. Furthermore, we observe an increase in Pt-Pt bonding, indicating the formation of platinum agglomerates. Together, these results indicate that while aniline is used to prepare platinum SSCs, the single-site complexes are decomposed and platinum agglomerates at operating potentials. This work is an important contribution to the understanding of the evolution of bonding environment in SSCs and provides some molecular insights into how platinum agglomeration causes the deactivation of SSCs over time.

3.
Chem Commun (Camb) ; 56(57): 7873-7876, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32529992

RESUMO

Mechanochemical grinding of polycrystalline powders of the Prussian blue analogue (PBA) Mn[Co(CN)6]2/3□1/3·xH2O and K3Co(CN)6 consumes the latter and chemically modifies the former. A combination of inductively-coupled plasma and X-ray powder diffraction measurements suggests the hexacyanometallate vacancy fraction in this modified PBA is reduced by approximately one third under the specific conditions we explore. We infer the mechanochemically-driven incorporation of [Co(CN)6]3- ions onto the initially-vacant sites, coupled with intercalation of charge-balancing K+ ions within the PBA framework cavities. Our results offer a new methodology for the synthesis of low-vacancy PBAs.

4.
Energy Fuels ; 33(5): 4651-4658, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32063668

RESUMO

Red phosphorus (RP) is a promising candidate as an anode for sodium-ion batteries because of its low potential and high specific capacity. It has two main disadvantages. First, it experiences 490% volumetric expansion during sodiation, which leads to particle pulverization and substantial reduction of the cycle life. Second, it has an extremely low electronic conductivity of 10-14 S cm-1. Both issues can be addressed by ball milling RP with a carbon matrix to form a composite of electronically conductive carbon and small RP particles, less susceptible to pulverization. Through this procedure, however, the resulting particle-size distribution of the RP particles is difficult to determine because of the presence of the carbon particles. Here, we quantify the relationship between the RP particle-size distribution and its cycle life for the first time by separating the ball-milling process into two steps. The RP is first wet-milled to reduce the particle size, and then the particle-size distribution is measured via dynamic light scattering. This is followed by a dry-milling step to produce RP-graphite composites. We found that wet milling breaks apart the largest RP particles in the range of 2-10 µm, decreases the Dv90 from 1.85 to 1.26 µm, and significantly increases the cycle life of the RP. Photoelectron spectroscopy and transmission electron microscopy confirm the successful formation of a carbon coating, with longer milling times leading to more uniform carbon coatings. The RP with a Dv90 of 0.79 µm mixed with graphite for 48 h delivered 1354 mA h g-1 with high coulombic efficiency (>99%) and cyclability (88% capacity retention after 100 cycles). These results are an important step in the development of cyclable, high-capacity anodes for sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...