Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082276

RESUMO

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Hematológicas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Genômica/métodos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/patologia , Humanos , Estadiamento de Neoplasias , Proteômica/métodos
2.
Cell ; 181(2): 219-222, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302564

RESUMO

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Assuntos
Neoplasias/metabolismo , Sistema Nervoso/metabolismo , Humanos , Neurociências
3.
PLoS One ; 9(12): e115144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502225

RESUMO

Recent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT) acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Glutaminase/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estresse Oxidativo/efeitos dos fármacos , Sulfetos/farmacologia , Tiadiazóis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Transição Epitelial-Mesenquimal , Estudos de Associação Genética , Glutaminase/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Terapia de Alvo Molecular
4.
Chem Biol ; 21(9): 1143-61, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237859

RESUMO

Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos/uso terapêutico , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
5.
Annu Rev Med ; 65: 157-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24422570

RESUMO

Therapeutic strategies designed to target cancer metabolism are an area of intense research. Antimetabolites, first used to treat patients in the early twentieth century, served as an early proof of concept for such therapies. We highlight strategies that attempt to improve on the anti-metabolite approach as well as new metabolic drug targets. Some of these targets have the advantage of a strong genetic anchor to drive patient selection (isocitrate dehydrogenase 1/2, Enolase 2). Additional approaches described here derive from hypothesis-driven and systems biology efforts designed to exploit tumor cell metabolic dependencies (fatty acid oxidation, nicotinamide adenine dinucleotide synthesis, glutamine biology).


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Metotrexato/uso terapêutico , NAD/metabolismo , Neoplasias/genética , Fosfopiruvato Hidratase/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
6.
Cell ; 155(4): 844-57, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24209622

RESUMO

Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or ß (PI5P4Kα and ß) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and ß in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K ß and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.


Assuntos
Neoplasias da Mama/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Respiração Celular , Senescência Celular , Embrião de Mamíferos/metabolismo , Técnicas de Silenciamento de Genes , Genes Letais , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
7.
Biochemistry ; 50(50): 10764-70, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22049910

RESUMO

Glutaminase (GLS1/2) catalyzes the conversion of L-glutamine to L-glutamate and ammonia. The level of a splice variant of GLS1 (GAC) is elevated in certain cancers, and GAC is specifically inhibited by bis-2-(5-phenylacetimido-1,2,4,thiadiazol-2-yl)ethyl sulfide (BPTES). We report here the first full-length crystal structure of GAC in the presence and absence of BPTES molecules. Two BPTES molecules bind at an interface region of the GAC tetramer in a manner that appears to lock the GAC tetramer into a nonproductive conformation. The importance of these loops with regard to overall enzymatic activity of the tetramer was revealed by a series of GAC point mutants designed to create a BPTES resistant GAC.


Assuntos
Sítio Alostérico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Bases de Dados de Proteínas , Dimerização , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Sulfetos/química , Sulfetos/metabolismo , Tiadiazóis/química , Tiadiazóis/metabolismo
8.
Mol Cell Biol ; 30(21): 5043-56, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20733003

RESUMO

Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.


Assuntos
Adiposidade/fisiologia , Fígado Gorduroso/prevenção & controle , Gluconeogênese/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Adiposidade/genética , Alelos , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Cruzamentos Genéticos , Primers do DNA/genética , Gorduras na Dieta/administração & dosagem , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Feminino , Gluconeogênese/genética , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Fenótipo , Gravidez , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Inanição/enzimologia , Inanição/genética , Inanição/fisiopatologia
9.
J Lipid Res ; 51(7): 1971-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181984

RESUMO

Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step during de novo synthesis of glycerolipids. Mammals have at least four GPAT isoforms. Here we report the further characterization of the two recently identified microsomal GPAT3 and GPAT4. Both enzymes are highly expressed in adipose tissues. However, while GPAT3 is highly (approximately 60-fold) induced during adipocyte differentiation, GPAT4 induction is only modest (approximately 5-fold), leading to a lower abundance of GPAT4 mRNA in adipocytes. While overexpression of GPAT3 and GPAT4 in either insect or mammalian cells results in a comparable increase of GPAT activity, shRNA-mediated knockdown of GPAT3, but not GPAT4, in 3T3-L1 adipocytes led to a significant decrease in GPAT activity, a profound inhibition of lipid accumulation, and a lack of expression of several adipogenic markers during adipocyte differentiation. These data suggest that GPAT3 may encode the major GPAT isoform in adipocytes and play an important role in adipogenesis. Furthermore, we have shown that both GPAT3 and GPAT4 are phosphorylated by insulin at Ser and Thr residues, leading to increased GPAT activity that is sensitive to wortmannin. Our results reveal a link between the lipogenic effects of insulin and microsomal GPAT3 and GPAT4, implying their importance in glycerolipid biosynthesis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipogenia/fisiologia , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/classificação , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Células 3T3-L1 , Sequência de Aminoácidos , Animais , Glicerol-3-Fosfato O-Aciltransferase/classificação , Glicerol-3-Fosfato O-Aciltransferase/genética , Células Hep G2 , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Camundongos , Dados de Sequência Molecular , Fosforilação , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Alinhamento de Sequência , Distribuição Tecidual
10.
Cell Cycle ; 6(16): 1966-9, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17721078

RESUMO

The Par-1 protein kinases are conserved from yeast to man and belong to a subfamily of kinases that includes the energy sensor and metabolic regulator, AMPK. Par-1 is regulated by LKB1 and atypical PKC and has been shown in multiple organisms and cell types to be critical for regulation of cellular polarity. Recent studies using knockout mice have revealed several surprising physiological functions for Par-1b/MARK2/EMK1. Our recent study shows that Par-1b regulates metabolic rate, adiposity and insulin sensitivity. This is the first study to implicate these kinases in metabolic functions akin to those previously defined for AMPK. Conversely, another series of recent publications now implicate AMPK in regulation of polarity. Here we discuss the metabolic phenotype seen in Par-1b deficient mice and the synthesis of several findings that link Par-1 and AMPK to a degree that has not been previously appreciated.


Assuntos
Polaridade Celular/fisiologia , Metabolismo Energético/fisiologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Polaridade Celular/genética , Metabolismo Energético/genética , Humanos , Complexos Multienzimáticos/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos
11.
Proc Natl Acad Sci U S A ; 104(13): 5680-5, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17372192

RESUMO

Obesity is a major factor central to the development of insulin resistance and type 2 diabetes. The identification and characterization of genes involved in regulation of adiposity, insulin sensitivity, and glucose uptake are key to the design and development of new drug therapies for this disease. In this study, we show that the polarity kinase Par-1b/MARK2 is required for regulating glucose metabolism in vivo. Mice null for Par-1b were lean, insulin hypersensitive, resistant to high-fat diet-induced weight gain, and hypermetabolic. (18)F-FDG microPET and hyperinsulinemic-euglycemic clamp analyses demonstrated increased glucose uptake into white and brown adipose tissue, but not into skeletal muscle of Par-1b null mice relative to wild-type controls. Taken together, these data indicate that Par-1b is a regulator of glucose metabolism and adiposity in the whole animal and may be a valuable drug target for the treatment of both type 2 diabetes and obesity.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade/genética , Proteínas de Ciclo Celular/fisiologia , Regulação da Expressão Gênica , Resistência à Insulina/genética , Insulina/metabolismo , Obesidade/genética , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Feminino , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Tempo
12.
Blood ; 107(10): 3868-75, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16434494

RESUMO

To produce blood platelets, megakaryocytes elaborate proplatelets, accompanied by expansion of membrane surface area and dramatic cytoskeletal rearrangements. The invaginated demarcation membrane system (DMS), a hallmark of mature cells, has been proposed as the source of proplatelet membranes. By direct visualization of labeled DMS, we demonstrate that this is indeed the case. Late in megakaryocyte ontogeny, the DMS gets loaded with PI-4,5-P(2), a phospholipid that is confined to plasma membranes in other cells. Appearance of PI-4,5-P(2) in the DMS occurs in proximity to PI-5-P-4-kinase alpha (PIP4Kalpha), and short hairpin (sh) RNA-mediated loss of PIP4Kalpha impairs both DMS development and expansion of megakaryocyte size. Thus, PI-4,5-P(2) is a marker and possibly essential component of internal membranes. PI-4,5-P(2) is known to promote actin polymerization by activating Rho-like GTPases and Wiskott-Aldrich syndrome (WASp) family proteins. Indeed, PI-4,5-P(2) in the megakaryocyte DMS associates with filamentous actin. Expression of a dominant-negative N-WASp fragment or pharmacologic inhibition of actin polymerization causes similar arrests in proplatelet formation, acting at a step beyond expansion of the DMS and cell mass. These observations collectively suggest a signaling pathway wherein PI-4,5-P(2) might facilitate DMS development and local assembly of actin fibers in preparation for platelet biogenesis.


Assuntos
Megacariócitos/fisiologia , Trombopoese , Animais , Proteínas de Bactérias/genética , Membrana Celular/fisiologia , Citometria de Fluxo , Proteínas Luminescentes/genética , Megacariócitos/citologia , Megacariócitos/virologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Plasmídeos , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/genética , Retroviridae/isolamento & purificação
13.
Curr Biol ; 14(8): 736-41, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15084291

RESUMO

The establishment and maintenance of cellular polarity are essential biological processes that must be maintained throughout the lifetime of eukaryotic organisms. The Par-1 protein kinases are key polarity determinants that have been conserved throughout evolution. Par-1 directs anterior-posterior asymmetry in the one-cell C. elegans embryo and the Drosophila oocyte. In mammalian cells, Par-1 may regulate epithelial cell polarity. Relevant substrates of Par-1 in these pathways are just being identified, but it is not yet known how Par-1 itself is regulated. Here, we demonstrate that human Par-1b (hPar-1b) interacts with and is negatively regulated by atypical PKC. hPar-1b is phosphorylated by aPKC on threonine 595, a residue conserved in Par-1 orthologs in mammals, worms, and flies. The equivalent site in hPar-1a, T564, is phosphorylated in vivo and by aPKC in vitro. Importantly, phosphorylation of hPar-1b on T595 negatively regulates the kinase activity and plasma membrane localization of hPar-1b in vivo. This study establishes a novel functional link between two central determinants of cellular polarity, aPKC and Par-1, and suggests a model by which aPKC may regulate Par-1 in polarized cells.


Assuntos
Polaridade Celular/fisiologia , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Treonina/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Fluorescência , Células HeLa , Humanos , Fosfopeptídeos/metabolismo , Fosforilação , Plasmídeos/genética , Testes de Precipitina , Proteína Quinase C/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Estrutura Terciária de Proteína , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...