Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 97(2): 574-9, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16668437

RESUMO

Conservation of respired CO(2) by an efficient recycling mechanism in fruit could provide a significant source of C for yield productivity. However, the extent to which such a mechanism operates in cotton (Gossypium hirsutum L.) is unknown. Therefore, a combination of CO(2) exchange, stable C isotope, and chlorophyll (Chl) fluorescence techniques were used to examine the recycling of respired CO(2) in cotton fruit. Respiratory CO(2) losses of illuminated fruit were reduced 15 to 20% compared with losses for dark-incubated fruit. This light-dependent reduction in CO(2) efflux occurred almost exclusively via the fruit's outer capsule wall. Compared with the photosynthetic activity of leaves, CO(2) recycling by the outer capsule wall was 35 to 40% as efficient. Calculation of (14)CO(2) fixation on a per Chl basis revealed that the rate of CO(2) recycling for the capsule wall was 62.2 micromoles (14)CO(2) per millimole Chl per second compared with an assimilation rate of 64.6 micromoles (14)CO(2) per millimole Chl per second for leaves. During fruit development, CO(2) recycling contributed more than 10% of that C necessary for fruit dry weight growth. Carbon isotope analyses (delta(13)C) showed significant differences among the organs examined, but the observed isotopic compositions were consistent with a C(3) pathway of photosynthesis. Pulse-modulated Chl fluorescence indicated that leaves and fruit were equally efficient in photochemical and nonphotochemical dissipation of light energy. These studies demonstrated that the cotton fruit possesses a highly efficient, light-dependent CO(2) recovery mechanism that aids in the net retention of plant C and, therein, contributes to yield productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA