Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(39): 13045-13060, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34745535

RESUMO

The oxidative addition of Pd to Si-H bonds is a crucial step in a variety of catalytic applications, and many aspects of this reaction are poorly understood. One important yet underexplored aspect is the electronic effect of silane substituents on reactivity. Herein we describe a systematic investigation of the formation of silyl palladium hydride complexes as a function of silane identity, focusing on electronic influence of the silanes. Using [(µ-dcpe)Pd]2 (dcpe = dicyclohexyl(phosphino)ethane) and tertiary silanes, data show that equilibrium strongly favours products formed from electron-deficient silanes, and is fully dynamic with respect to both temperature and product distribution. A notable kinetic isotope effect (KIE) of 1.21 is observed with H/DSiPhMe2 at 233 K, and the reaction is shown to be 0.5th order in [(µ-dcpe)Pd]2 and 1st order in silane. Formed complexes exhibit temperature-dependent intramolecular H/Si ligand exchange on the NMR timescale, allowing determination of the energetic barrier to reversible oxidative addition. Taken together, these results give unique insight into the individual steps of oxidative addition and suggest the initial formation of a σ-complex intermediate to be rate-limiting. The insight gained from these mechanistic studies was applied to hydrosilylation of alkynes, which shows parallel trends in the effect of the silanes' substituents. Importantly, this work highlights the relevance of in-depth mechanistic studies of fundamental steps to catalysis.

2.
ACS Appl Mater Interfaces ; 11(6): 5590-5594, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708339

RESUMO

Metal (oxy)hydroxides (MO xH y, M = Fe, Co, Ni, and mixtures thereof) are important materials in electrochemistry. In particular, MO xH y are the fastest known catalysts for the oxygen evolution reaction (OER) in alkaline media. While key descriptors such as overpotentials and activity have been thoroughly characterized, the nanostructure and its dynamics under electrochemical conditions are not yet fully understood. Here, we report on the structural evolution of Ni1-δCoδO xH y nanosheets with varying ratios of Ni to Co, in operando using atomic force microscopy during electrochemical cycling. We found that the addition of Co to NiO xH y nanosheets results in a higher porosity of the as-synthesized nanosheets, apparently reducing mechanical stress associated with redox cycling and hence enhancing stability under electrochemical conditions. As opposed to nanosheets composed of pure NiO xH y, which dramatically reorganize under electrochemical conditions to form nanoparticle assemblies, restructuring is not found for Ni1-δCoδO xH y with a high Co content. Ni0.8Fe0.2O xH y nanosheets show high roughness as-synthesized which increases during electrochemical cycling while the integrity of the nanosheet shape is maintained. These findings enhance the fundamental understanding of MO xH y materials and provide insight into how nanostructure and composition affect structural dynamics at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...