Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 21(1): 101-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25649315

RESUMO

Molecular characterization and genetic diversity among 82 soybean accessions was carried out by using 44 simple sequence repeat (SSR) markers. Of the 44 SSR markers used, 40 markers were found polymorphic among 82 soybean accessions. These 40 polymorphic markers produced a total of 119 alleles, of which five were unique alleles and four alleles were rare. The allele number for each SSR locus varied between two to four with an average of 2.97 alleles per marker. Polymorphic information content values of SSRs ranged from 0.101 to 0.742 with an average of 0.477. Jaccard's similarity coefficient was employed to study the molecular diversity of 82 soybean accessions. The pairwise genetic similarity among 82 soybean accessions varied from 0.28 to 0.90. The dendrogram constructed based on genetic similarities among 82 soybean accessions identified three major clusters. The majority of genotypes including four improved cultivars were grouped in a single subcluster IIIa of cluster III, indicating high genetic resemblance among soybean germplasm collection in India.

2.
Virus Genes ; 48(1): 1-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445902

RESUMO

MicroRNAs (miRNAs) are small regulatory RNAs that play a defining role in post-transcriptional gene silencing of eukaryotes by either mRNA cleavage or translational inhibition. Plant miRNAs have been implicated in innumerable growth and developmental processes that extend beyond their ability to respond to biotic and abiotic stresses. Active in an organism's immune defence response, host miRNAs display a propensity to target viral genomes. During viral invasion, these virus-targeting miRNAs can be identified by their altered expression. All the while, pathogenic viruses, as a result of their long-term interaction with plants, have been evolving viral suppressors of RNA silencing (VSRs), as well as viral-encoded miRNAs as a counter-defence strategy. However, the gene silencing attribute of miRNAs has been ingeniously manipulated to down-regulate the expression of any gene of interest, including VSRs, in artificial miRNA (amiRNA)-based transgenics. Since we currently have a better understanding of the intricacies of miRNA-mediated gene regulation in plant-virus interactions, the majority of miRNAs manipulated to confer antiviral resistance to date are in plants. This review will share the insights gained from the studies of plant-virus combat and from the endeavour to manipulate miRNAs, including prospective challenges in the context of the evolutionary dynamics of the viral genome. Next generation sequencing technologies and bioinformatics analysis will further delineate the molecular details of host-virus interactions. The need for appropriate environmental risk assessment principles specific to amiRNA-based virus resistance is also discussed.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/genética , Vírus de Plantas/fisiologia , Plantas/imunologia , Plantas/virologia , RNA de Plantas/genética , Inativação Gênica , Vírus de Plantas/crescimento & desenvolvimento , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...