Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0275022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264851

RESUMO

A Stock market collapse occurs when stock prices drop by more than 10% across all main indexes. Predicting a stock market crisis is difficult because of the increased volatility in the stock market. Stock price drops can be triggered by a variety of factors, including corporate results, geopolitical tensions, financial crises, and pandemic events. For scholars and investors, predicting a crisis is a difficult endeavor. We developed a model for the prediction of stock crisis using Hybridized Feature Selection (HFS) approach. Firstly, we went for the suggestion of the HFS method for the removal of stock's unnecessary financial attributes. The Naïve Bayes approach, on the other hand, is used for the classification of strong fundamental stocks. In the third step, Stochastic Relative Strength Index (StochRSI) is employed to identify a stock price bubble. In the fourth step, we identified the stock market crisis point in stock prices through moving average statistics. The fifth is the prediction of stock crises by using deep learning algorithms such as Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM). Root Mean Square Error (RMSE), Mean Squared Error (MSE) and Mean Absolute Error (MAE) are implemented for assessing the performance of the models. The HFS-based GRU technique outperformed the HFS-based LSTM method to anticipate the stock crisis. To complete the task, the experiments used Pakistan datasets. The researchers can look at additional technical factors to forecast when a crisis would occur in the future. With a new optimizer, the GRU approach may be improved and fine-tuned even more.


Assuntos
Algoritmos , Investimentos em Saúde , Paquistão , Teorema de Bayes , Previsões
2.
PLoS One ; 17(5): e0265190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559954

RESUMO

MOTIVATION: Many real applications such as businesses and health generate large categorical datasets with uncertainty. A fundamental task is to efficiently discover hidden and non-trivial patterns from such large uncertain categorical datasets. Since the exact value of an attribute is often unknown in uncertain categorical datasets, conventional clustering analysis algorithms do not provide a suitable means for dealing with categorical data, uncertainty, and stability. PROBLEM STATEMENT: The ability of decision making in the presence of vagueness and uncertainty in data can be handled using Rough Set Theory. Though, recent categorical clustering techniques based on Rough Set Theory help but they suffer from low accuracy, high computational complexity, and generalizability especially on data sets where they sometimes fail or hardly select their best clustering attribute. OBJECTIVES: The main objective of this research is to propose a new information theoretic based Rough Purity Approach (RPA). Another objective of this work is to handle the problems of traditional Rough Set Theory based categorical clustering techniques. Hence, the ultimate goal is to cluster uncertain categorical datasets efficiently in terms of the performance, generalizability and computational complexity. METHODS: The RPA takes into consideration information-theoretic attribute purity of the categorical-valued information systems. Several extensive experiments are conducted to evaluate the efficiency of RPA using a real Supplier Base Management (SBM) and six benchmark UCI datasets. The proposed RPA is also compared with several recent categorical data clustering techniques. RESULTS: The experimental results show that RPA outperforms the baseline algorithms. The significant percentage improvement with respect to time (66.70%), iterations (83.13%), purity (10.53%), entropy (14%), and accuracy (12.15%) as well as Rough Accuracy of clusters show that RPA is suitable for practical usage. CONCLUSION: We conclude that as compared to other techniques, the attribute purity of categorical-valued information systems can better cluster the data. Hence, RPA technique can be recommended for large scale clustering in multiple domains and its performance can be enhanced for further research.


Assuntos
Algoritmos , Análise por Conglomerados , Entropia , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA