Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Thorax ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331579

RESUMO

BACKGROUND: The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS: In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS: Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION: The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.

2.
PLoS One ; 17(5): e0267195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551278

RESUMO

BACKGROUND: Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). METHODS: Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. RESULTS: Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. CONCLUSION: Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.


Assuntos
Micobioma , Doença Pulmonar Obstrutiva Crônica , Antibacterianos , Líquido da Lavagem Broncoalveolar , Humanos , Estudos Longitudinais , Pulmão
3.
PLoS One ; 16(4): e0248967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826639

RESUMO

BACKGROUND: The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS: The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION: Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.


Assuntos
Fungos , Pulmão/microbiologia , Boca/microbiologia , Micobioma/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Idoso , Estudos de Casos e Controles , DNA Fúngico/isolamento & purificação , Feminino , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
4.
Respirology ; 26(4): 342-351, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33164314

RESUMO

BACKGROUND AND OBJECTIVE: Activation of the blood coagulation system is a common observation in inflammatory diseases. The role of coagulation in COPD is underexplored. METHODS: The study included 413 COPD patients and 49 controls from the 3-year Bergen COPD Cohort Study (BCCS). One hundred and forty-eight COPD patients were also examined during AECOPD. The plasma markers of coagulation activation, TAT complex, APC-PCI complex and D-dimer, were measured at baseline and during exacerbations by enzyme immunoassays. Differences in levels of the markers between stable COPD patients and controls, and between stable COPD and AECOPD were examined. The associations between coagulation markers and later AECOPD and mortality were examined by negative binomial and Cox regression analyses. RESULTS: TAT was significantly lower in stable COPD (1.03 ng/mL (0.76-1.44)) than in controls (1.28 (1.04-1.49), P = 0.002). During AECOPD, all markers were higher than in the stable state: TAT 2.56 versus 1.43 ng/mL, APC-PCI 489.3 versus 416.4 ng/mL and D-dimer 763.5 versus 479.7 ng/mL (P < 0.001 for all). Higher D-dimer in stable COPD predicted a higher mortality (HR: 1.60 (1.24-2.05), P < 0.001). Higher TAT was associated with both an increased risk of later exacerbations, with a yearly incidence rate ratio of 1.19 (1.04-1.37), and a faster time to the first exacerbation (HR: 1.25 (1.10-1.42), P = 0.001, all after adjustment). CONCLUSION: Activation of the coagulation system is increased during COPD exacerbations. Coagulation markers are potential predictors of later COPD exacerbations and mortality.


Assuntos
Intervenção Coronária Percutânea , Doença Pulmonar Obstrutiva Crônica , Coagulação Sanguínea , Estudos de Coortes , Progressão da Doença , Humanos
5.
Respir Med ; 152: 81-88, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31128615

RESUMO

BACKGROUND: COPD patients have an increased risk of developing lung cancer, but the underlying mechanisms are poorly understood. We aimed to identify risk factors for lung cancer in patients from the Bergen COPD Cohort Study. METHODS: We compared 433 COPD patients with 279 healthy controls, all former or current smokers. All COPD patients had FEV1<80% and FEV1/FVC-ratio<0.7. Baseline predictors were sex, age, spirometry, body composition, smoking history, emphysema assessed by CT, chronic bronchitis, prior exacerbation frequency, Charlson Comorbidity Score, inhalation medication and 44 serum/plasma inflammatory biomarkers. Patients were followed up for 9 years recording incidence of lung cancer. Cox-regression models were fitted for the statistical analyses. The biomarkers were evaluated using principal component analysis. RESULTS: 28 COPD patients and 3 controls developed lung cancer, COPD patients had a significantly higher risk of developing lung cancer, (HR 5.0; 95% CI 1.5-17.1, p < 0.01, adjusted values). Among COPD patients, emphysema (HR 4.4; 1.7-10.8, p < 0.01) and obesity (HR 3.3; 1.3-8.5, p = 0.02) were associated with a higher cancer rate. Use of inhaled steroids was associated with a lower rate (HR 0.4; 0.2-0.9, p = 0.03). Smoking status, pack-years smoked or levels of systemic inflammatory markers, except for interferon gamma-induced protein 10, did not affect the lung cancer rate in patients with COPD. CONCLUSION: Patients with COPD have a higher lung cancer rate compared to healthy controls adjusted for smoking. The presence of emphysema and obesity in COPD predicted a higher lung cancer risk in COPD patients. Systemic inflammation was not associated with increased lung cancer risk.


Assuntos
Neoplasias Pulmonares/epidemiologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Enfisema Pulmonar/epidemiologia , Administração por Inalação , Idoso , Biomarcadores/sangue , Bronquite Crônica/complicações , Bronquite Crônica/epidemiologia , Estudos de Coortes , Comorbidade , Feminino , Seguimentos , Humanos , Incidência , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/epidemiologia , Valor Preditivo dos Testes , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/diagnóstico por imagem , Fatores de Risco , Fumar/efeitos adversos , Fumar/epidemiologia , Espirometria/métodos , Esteroides/administração & dosagem , Esteroides/efeitos adversos , Esteroides/uso terapêutico , Exacerbação dos Sintomas
6.
Eur Respir J ; 49(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28298399

RESUMO

Increased levels of growth differentiation factor-15 (GDF15) are associated with cachexia, cardiovascular disease and all-cause mortality. The role of GDF15 in chronic obstructive pulmonary disease (COPD) is unknown.The study included 413 patients with COPD from the Bergen COPD Cohort Study. All patients had a forced expiratory volume in 1 s (FEV1) <80% predicted, a FEV1 to forced vital capacity (FVC) ratio <0.7 and a history of smoking. Spirometry, fat free mass index, blood gases and plasma GDF15 were measured at baseline. Patients were followed for 3 years regarding exacerbations and changes in lung function, and 9 years for mortality. Yearly exacerbation rate, survival and yearly change in FEV1/FVC were evaluated with regression models.Median plasma GDF15 was 0.86 ng·mL-1 (interquartile range 0.64-1.12 ng·mL-1). The distribution was not normal and GDF15 was analysed as a categorical variable. High levels of GDF15 were associated with a higher exacerbation rate (incidence rate ratio 1.39, 95% CI 1.1-1.74, p=0.006, adjusted values). Furthermore, high levels of GDF15 were associated with higher mortality (hazard ratio 2.07, 95% CI 1.4-3.1, p<0.001) and an increased decline in both FEV1 (4.29% versus 3.25%) and FVC (2.63% versus 1.44%) in comparison to low levels (p<0.01 for both).In patients with COPD, high levels of GDF15 were independently associated with a higher yearly rate of exacerbations, higher mortality and increased decline in both FEV1 and FVC.


Assuntos
Progressão da Doença , Fator 15 de Diferenciação de Crescimento/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/mortalidade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Estudos de Coortes , Estudos Transversais , Feminino , Volume Expiratório Forçado , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco , Índice de Gravidade de Doença , Fumar , Espirometria , Capacidade Vital
7.
Am J Physiol Lung Cell Mol Physiol ; 311(1): L1-7, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27190066

RESUMO

Macrophage migration inhibitor factor (MIF) is a pluripotent cytokine associated with several different inflammatory conditions, but its role within lung inflammation and chronic obstructive pulmonary disease (COPD) is unclear. This study aimed to examine MIF in both stable COPD and during acute exacerbations (AECOPD). The study included 433 patients with COPD aged 41-76 and 325 individuals from the Bergen COPD cohort study who served as controls. All patients had an FEV1 of <80% predicted, FEV1/FVC ratio of <0.7, and a smoking history >10 pack-years. Serum levels of MIF were compared between the two groups at baseline, and for 149 patients, measurements were also carried out during AECOPD. Linear regression models were fitted with MIF as the outcome variable and adjusted for sex, age, body composition, smoking, and Charlson Comorbidity Score (CCS). Median MIF (interquartile range) in patients with COPD was 20.1 ng/ml (13.5-30.9) compared with 14.9 ng/ml (11.1-21.6) in controls (P < 0.01). MIF was bivariately associated with sex, body composition, and CCS (P < 0.05 for all). In the regression analyses, MIF was significantly higher in patients with COPD, coefficient 1.32 (P < 0.01) and 1.30 (P < 0.01) unadjusted and adjusted, respectively. In addition, in 149 patients during episodes of AECOPD, MIF was significantly elevated, with a median of 23.2 ng/ml (14.1-42.3) compared with measurements at stable disease of 19.3 ng/ml (12.4-31.3, P < 0.01). Serum levels of MIF were significantly higher in patients with COPD compared with controls. We also identified an additional increase in MIF levels during episodes of AECOPD.


Assuntos
Oxirredutases Intramoleculares/sangue , Fatores Inibidores da Migração de Macrófagos/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
PLoS One ; 9(10): e109721, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279458

RESUMO

BACKGROUND: COPD exacerbations accelerate disease progression. AIMS: To examine if COPD characteristics and systemic inflammatory markers predict the risk for acute COPD exacerbation (AECOPD) frequency and duration. METHODS: 403 COPD patients, GOLD stage II-IV, aged 44-76 years were included in the Bergen COPD Cohort Study in 2006/07, and followed for 3 years. Examined baseline predictors were sex, age, body composition, smoking, AECOPD the last year, GOLD stage, Charlson comorbidity score (CCS), hypoxemia (PaO2<8 kPa), cough, use of inhaled steroids, and the inflammatory markers leucocytes, C-reactive protein (CRP), neutrophil gelatinase associated lipocalin (NGAL), soluble tumor necrosis factor receptor 1 (sTNF-R1), and osteoprotegrin (OPG). Negative binomial models with random effects were fitted to estimate the annual incidence rate ratios (IRR). For analysis of AECOPD duration, a generalized estimation equation logistic regression model was fitted, also adjusting for season, time since inclusion and AECOPD severity. RESULTS: After multivariate adjustment, significant predictors of AECOPD were: female sex [IRR 1.45 (1.14-1.84)], age per 10 year increase [1.23 (1.03-1.47)], >1 AECOPD last year before baseline [1.65 (1.24-2.21)], GOLD III [1.36 (1.07-1.74)], GOLD IV [2.90 (1.98-4.25)], chronic cough [1.64 (1.30-2.06)] and use of inhaled steroids [1.57 (1.21-2.05)]. For AECOPD duration more than three weeks, significant predictors after adjustment were: hypoxemia [0.60 (0.39-0.92)], years since inclusion [1.19 (1.03-1.37)], AECOPD severity; moderate [OR 1.58 (1.14-2.18)] and severe [2.34 (1.58-3.49)], season; winter [1.51 (1.08-2.12)], spring [1.45 (1.02-2.05)] and sTNF-R1 per SD increase [1.16 (1.00-1.35)]. CONCLUSION: Several COPD characteristics were independent predictors of both AECOPD frequency and duration.


Assuntos
Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Mediadores da Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Adulto , Idoso , Comorbidade , Progressão da Doença , Feminino , Seguimentos , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Doença Pulmonar Obstrutiva Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...