Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(4): e2836, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890426

RESUMO

Forests are major carbon (C) sinks, but their ability to sequester C and thus mitigate climate change, varies with the environment, disturbance regime, and biotic interactions. Herbivory by invasive, nonnative ungulates can have profound ecosystem effects, yet its consequences for forest C stocks remain poorly understood. We determined the impact of invasive ungulates on C pools, both above- and belowground (to 30 cm), and on forest structure and diversity using 26 paired long-term (>20 years) ungulate exclosures and adjacent unfenced control plots located in native temperate rainforests across New Zealand, spanning 36-41° S. Total ecosystem C was similar between ungulate exclosure (299.93 ± 25.94 Mg C ha-1 ) and unfenced control (324.60 ± 38.39 Mg C ha-1 ) plots. Most (60%) variation in total ecosystem C was explained by the biomass of the largest tree (mean diameter at breast height [dbh]: 88 cm) within each plot. Ungulate exclusion increased the abundance and diversity of saplings and small trees (dbh ≥2.5, <10 cm) compared with unfenced controls, but these accounted for ~5% of total ecosystem C, demonstrating that a few, large trees dominate the total forest ecosystem C but are unaffected by invasive ungulates at a timescale of 20-50 years. However, changes in understory C pools, species composition, and functional diversity did occur following long-term ungulate exclusion. Our findings suggest that, although the removal of invasive herbivores may not affect total forest C at the decadal scale, major shifts in the diversity and composition of regenerating species will have longer term consequences for ecosystem processes and forest C.


Assuntos
Cervos , Árvores , Animais , Ecossistema , Carbono , Florestas
2.
Heliyon ; 8(6): e09708, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35756115

RESUMO

Globally, many populations suffer from a lack of access to basic sanitation facilities. This is partly caused by a combination of water resource shortages and the high cost of conventional centralised treatment systems. A novel decentralised treatment technology based on sub-critical hydrothermal processing of organic wastes at toilet-scale, contributes to addressing these economic and resource limitations. To be effective, this technology needs to satisfy a broad range of environmental and safety considerations, including the nature and quantity of formed gas products. We investigated the impact of four process parameters (temperature; O2: COD ratio (λ); time; feed solids content) on off-gas composition by quantifying volatile organic compounds (VOCs), CO, H2 and CO2 in factorial experiments. Temperature and λ influenced VOCs generation greatly. The lowest VOC emissions occurred at 200% λ and 300 °C. Aldehydes and ketones were mostly generated at 200% λ and intermediate temperatures, sulphur compounds in the absence of oxygen, and aromatics, furans, and pyrroles at intermediate oxygen levels and elevated temperatures. Most CO was created at 300 °C but its concentration decreased at longer processing times. Processing conditions have complex impacts and require careful consideration when designing for real world deployment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...