Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019788

RESUMO

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Assuntos
Biocatálise , Histonas/metabolismo , Oncogenes , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilases/metabolismo , Humanos , Cinética , Metilação , Modelos Biológicos , RNA Polimerase II/metabolismo
2.
Epilepsia Open ; 4(3): 504-510, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31440733

RESUMO

We sought to determine incidence, etiologies, and yield of genetic testing in infantile onset developmental and epileptic encephalopathies (DEEs) in a population isolate, with an intensive multistage approach. Infants born in Tasmania between 2011 and 2016, with seizure onset <2 years of age, epileptiform EEG, frequent seizures, and developmental impairment, were included. Following review of EEG databases, medical records, brain MRIs, and other investigations, clinical genetic testing was undertaken with subsequent research interrogation of whole exome sequencing (WES) in unsolved cases. The incidence of infantile DEEs was 0.44/1000 per year (95% confidence interval 0.25 to 0.71), with 16 cases ascertained. The etiology was structural in 5/16 cases. A genetic basis was identified in 6 of the remaining 11 cases (3 gene panel, 3 WES). In two further cases, WES identified novel variants with strong in silico data; however, paternal DNA was not available to support pathogenicity. The etiology was not determined in 3/16 (19%) cases, with a candidate gene identified in one of these. Pursuing clinical imaging and genetic testing followed by WES at an intensive research level can give a high diagnostic yield in the infantile DEEs, providing a solid base for prognostic and genetic counseling.

3.
Am J Med Genet A ; 179(8): 1483-1490, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145546

RESUMO

Pathogenic variants in the X-chromosome Aristaless-related homeobox (ARX) gene contribute to intellectual disability, epilepsy, and associated comorbidities in affected males. Here, we report a novel splice variant in ARX in a family with three affected individuals. The proband had early onset developmental and epileptic encephalopathy, his brother and mother had severe and mild intellectual disability, respectively. Massively parallel sequencing identified a novel c.1449-1G>C in intron 4 of the ARX gene, predicted to abolish the splice acceptor site, retaining intron 4 and leading to a premature termination codon immediately after exon 4. As exon 5 is the last exon of the ARX gene, the premature termination codon at position p.L484* would be predicted to escape nonsense-mediated mRNA decay, potentially producing at least some C-terminally truncated protein. Analysis of cDNA from patient lymphoblastoid cells confirmed retention of intron 4 and loss of detectable expression of ARX mRNA across exon 4 to exon 5. We review published cases of variants that lead to altered or early termination of the ARX protein, but not complete loss of function, and are associated with phenotypes of intellectual disability and infantile onset developmental and epileptic encephalopathies, including Ohtahara and West syndromes. Taken together, this novel splice variant retaining intron 4 is likely to be the cause of the early onset developmental and epileptic encephalopathy in the proband.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Mutação , Splicing de RNA , Espasmos Infantis/genética , Fatores de Transcrição/genética , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Sequência de Bases , Criança , Pré-Escolar , Éxons , Família , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Íntrons , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Linhagem , Espasmos Infantis/diagnóstico , Espasmos Infantis/fisiopatologia , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...