Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 27(1): 325-335, Feb. 2024. mapas
Artigo em Inglês | IBECS | ID: ibc-230264

RESUMO

Urinary tract infections (UTIs) are among the most prevalent bacterial infections affecting people in inpatient and outpatient settings. The current study aimed to sequence the genome of uropathogenic Escherichia coli strain CUI-B1 resourced from a woman having uncomplicated cystitis and pyelonephritis. Followed by deductive genomics towards potential drug targets using E. coli strain CUI-B1, strain O25b: H4-ST131, Proteus mirabilis strain HI4320, Klebsiella pneumoniae strain 1721, and Staphylococcus saprophyticus strain ATCC 15305 uropathogenic strains. Comparative genome analysis revealed that genes related to the survival of E. coli, P. mirabilis, K. pneumoniae, and S. saprophyticus, such as genes of metal-requiring proteins, defense-associated genes, and genes associated with general physiology, were found to be highly conserved in the genomes including strain CUI-B1. However, the genes responsible for virulence and drug resistance, mainly those that are involved in bacterial secretion, fimbriae, adherence, and colonization, were found in various genomic regions and varied from one species to another or within the same species. Based on the genome sequence, virulence, and antimicrobial-resistant gene dataset, the subtractive proteomics approach revealed 22 proteins mapped to the pathogen’s unique pathways and among them, entB, clbH, chuV, and ybtS were supposed to be potential drug targets and the single drug could be utilized for all above-mentioned strains. These results may provide the foundation for the optimal target for future discovery of drugs for E. coli-, P. mirabilis-, K. pneumoniae-, and S. saprophyticus-based infections and could be investigated further to employ in personalized drug development.(AU)


Assuntos
Humanos , Infecções Urinárias/microbiologia , Virulência , Resistência a Medicamentos , Escherichia coli/genética , Fatores de Virulência , Antibacterianos , Bactérias/genética , Bactérias/metabolismo , Microbiologia , Técnicas Microbiológicas
2.
Int Microbiol ; 27(1): 325-335, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37553507

RESUMO

Urinary tract infections (UTIs) are among the most prevalent bacterial infections affecting people in inpatient and outpatient settings. The current study aimed to sequence the genome of uropathogenic Escherichia coli strain CUI-B1 resourced from a woman having uncomplicated cystitis and pyelonephritis. Followed by deductive genomics towards potential drug targets using E. coli strain CUI-B1, strain O25b: H4-ST131, Proteus mirabilis strain HI4320, Klebsiella pneumoniae strain 1721, and Staphylococcus saprophyticus strain ATCC 15305 uropathogenic strains. Comparative genome analysis revealed that genes related to the survival of E. coli, P. mirabilis, K. pneumoniae, and S. saprophyticus, such as genes of metal-requiring proteins, defense-associated genes, and genes associated with general physiology, were found to be highly conserved in the genomes including strain CUI-B1. However, the genes responsible for virulence and drug resistance, mainly those that are involved in bacterial secretion, fimbriae, adherence, and colonization, were found in various genomic regions and varied from one species to another or within the same species. Based on the genome sequence, virulence, and antimicrobial-resistant gene dataset, the subtractive proteomics approach revealed 22 proteins mapped to the pathogen's unique pathways and among them, entB, clbH, chuV, and ybtS were supposed to be potential drug targets and the single drug could be utilized for all above-mentioned strains. These results may provide the foundation for the optimal target for future discovery of drugs for E. coli-, P. mirabilis-, K. pneumoniae-, and S. saprophyticus-based infections and could be investigated further to employ in personalized drug development.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Feminino , Virulência/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Fatores de Virulência/genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Genômica
3.
Extremophiles ; 27(2): 14, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354217

RESUMO

Extreme cold environments, such as polar regions or high-altitude mountains, are known for their challenging conditions including low temperatures, high salinity, and limited nutrient availability. Microbes that thrive in these environments have evolved specialized strategies to survive and function under such harsh conditions. The study aims to identify, sequence the genome, perform genome assembly, and conduct a comparative genome-wide analysis of Acinetobacter sp. strain P1, which was isolated from the Batura glacier regions of Pakistan. A basic local alignment search tool of NCBI using 16 s RNA gene sequence confirmed the strain Acinetobacter following phylogenetic analysis revealed that strain P1 clustered with Acinetobacter sp. strain AcBz01. The high-throughput Genome sequencing was done by the NovaSeq 6000 sequencing system following de novo genome assembly reported 23 contigs, a genome size of 3,732,502 bp containing approximately 3489 genes and 63 RNAs (60 tRNA, 3 rRNA). The comparative genome analysis revealed that Acinetobacter sp. strain P1 exhibited the highest homology with the Acinetobacter baumannii ATCC 17978 genome and encompassed 1668 indispensable genes, 1280 conserved genes 1821 specific genes suggesting high genomic plasticity and evolutionary diversity. The genes with functional assignments include exopolysaccharide phosphotransferase enzyme, cold-shock proteins, T6SS, membrane modifications, antibiotic resistance, and set of genes related to a wide range of metabolic characteristics such as exopolysaccharides were also present. Moreover, the structural prediction analysis of EPS proteins reveals that structural flexibility allows for conformational modifications during catalysis, which boosts or increases the catalytic effectiveness at lower temperatures. Overall, the identification of Acinetobacter, a cold-adapted bacterium, offers promising applications in bioremediation, enzyme production, food preservation, pharmaceutical development, and astrobiology. Further research and exploration of these microorganisms can unlock their full biotechnological potential and contribute to various industries and scientific endeavors.


Assuntos
Acinetobacter , Acinetobacter/genética , Filogenia , Catálise , Genômica , Variação Genética , Genoma Bacteriano
4.
Sci Rep ; 10(1): 8150, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424332

RESUMO

Enterobacter cloacae complex (Ecc) species are widely distributed opportunistic pathogens mainly associated with humans and plants. In this study, the genomes of clinical isolates including E. hormaechei, E. kobei, and E. ludwigii and non-clinical isolate including E. nimipressuralis were analysed in combination with the genome of E. asburiae by using the reference strain E. cloacae subsp. cloacae ATCC 13047; the Ecc strains were tested on artificial sputum media (ASM), which mimics the host, to evaluate T6SS genes as a case study. All five Ecc strains were sequenced in our lab. Comparative genome analysis of the Ecc strains revealed that genes associated with the survival of Ecc strains, including genes of metal-requiring proteins, defence-associated genes and genes associated with general physiology, were highly conserved in the genomes. However, the genes involved in virulence and drug resistance, specifically those involved in bacterial secretion, host determination and colonization of different strains, were present in different genomic regions. For example, T6SS accessory and core components, T4SS, and multidrug resistance genes/efflux system genes seemed vital for the survival of Ecc strains in various environmental niches, such as humans and plants. Moreover, the ASM host-mimicking growth medium revealed significantly high expression of T6SS genes, including PrpC, which is a regulatory gene of the T6SS, in all tested Ecc strains compared to the control medium. The variations in T6SS gene expression in ASM vs. control showed that the ASM system represents a simple, reproducible and economical alternative to animal models for studies such as those aimed at understanding the divergence of Ecc populations. In summary, genome sequencing of clinical and environmental Ecc genomes will assist in understanding the epidemiology of Ecc strains, including the isolation, virulence characteristics, prevention and treatment of infectious disease caused by these broad-host-range niche-associated species.


Assuntos
Enterobacter cloacae/genética , Enterobacter cloacae/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Genoma Bacteriano , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacter cloacae/classificação , Enterobacter cloacae/fisiologia , Humanos , Filogenia , Virulência
5.
Comput Biol Chem ; 86: 107245, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32172200

RESUMO

Burkholderia glumae, the primary causative agent of bacterial panicle blight in rice, has been reported as an opportunistic pathogen in patients with chronic infections. This study aimed to re-sequence the clinical isolate B. glumae strain AU6208 and comparatively analyze its genome using B. glumae strain BGR1 from rice plant as the reference. Re-sequencing results revealed that the genome of strain AU6208 comprised 96 contigs corresponding to a 6.1 Mbp genome of the strain AU6208, with 5322 coding sequences and 68.2 % GC content; this is much larger compared to the genome previously sequenced by us and described by Seo et al (2015), which was reported to be 4.1 Mbp comprising >1200 contigs, 4361 coding sequences, and 67.31 % GC content. Moreover, this updated genome shares >80 % identity to the 7.2 Mbp genome of BGR1, which encodes 6491 coding sequences and has 68.3 % GC content. Further computational analysis revealed that the strain AU6208 encodes several bacteriocin biosynthesis genes, antibiotic, as well as virulent genes such as toxoflavin genes, which included 425 specialty genes and 12 toxoflavin genes. Upon further characterization, 12 toxoflavins (ToxA, B, C, D, E, F, G, H, I, J, TofI, and TofR) were found in AU6208 with 70-100 % sequence, family, and domain similarity with that of BGR1. Upon comparison with BGR1, the structural characterizations of selected toxoflavin genes (ToxB, ToxC, ToxG, H, and TofI) revealed variations in 2D and 3D structures such as differences in α-helix, ß-sheets, loops, physiological properties of proteins, RMSD values, etc. These variations may play significant role in different mode of action in different hosts thereby indicating that in addition to their respective hosts, toxoflavins could also contribute to exploit other hosts across the kingdom. In addition to understanding the epidemiology of strain AU6208, this updated genomics data will also unfold the pathogenicity of bacteria in diversity of various hosts and anti-virulence.


Assuntos
Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Burkholderia/genética , Genoma Bacteriano , Pirimidinonas , Triazinas , Burkholderia/patogenicidade
6.
Evol Bioinform Online ; 14: 1176934318790252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083049

RESUMO

Multidrug-resistant Mycobacterium tuberculosis is a global threat particularly in developing countries like Pakistan. In this study, we identified 2 M tuberculosis strains, mnpk and swlpk, by 16S RNA genes, sequenced their draft genome, and compared the 2 genomes with reference strain H37Rv and gene expression analysis of selected virulent genes. Phylogenetic analysis of M tuberculosis strains, mnpk and swlpk, using 16S RNA genes revealed that the strains are closely related with reference strain H37Rv. The draft genome sequence of mnpk and swlpk contains 4305 and 4295 protein-coding genes, respectively, having 99.9% with high collinearity when compared with H37Rv. Although some important drug-resistant genes such as fabG, faDE24, and iniA were missing, genome mining also revealed key drug-resistant genes such as katG, inhA, rpoA, rpoB, and rpoC against first-line isoniazid and rifampicin drug. The strain mnpk and swlpk encodes 257 putative and 86 verified virulent genes including type 7 secretion system (T7SS) key genes. The variation in the expression profile of selected T7SS genes, particularly low expression level of EspK, raised concern that the mechanism of virulence of mnpk and swlpk might be different from H37Rv strains as espK is associated with ATPase EccC1a and EccC1b which showed high expression level. Briefly, this study shows that the strains mnpk and swlpk are linked with H37Rv having 99% similarity in genomes, but the absence of drug-resistant genes and variation in key genes' expression profile espK, EccE1, PPE41, and espC provide a rationale for the future investigation of M tuberculosis mnpk and swlpk pathogenesis via RNA sequencing, single-nucleotide polymorphisms, as well as gene manipulation.

7.
Evol Bioinform Online ; 14: 1176934318754878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472760

RESUMO

Sigma factors are bacterial transcription factors that bind the core RNA polymerase and direct transcription initiation at a specific promoter site. These specialized sigma factors bind the promoters of genes appropriate to the environmental conditions and selectively increase the transcription of those genes. Here, we attempt to identify sigma factors in 5 genomes belonging to the Enterobacter cloacae complex (Ecc), a group of gram-negative bacteria that are important nosocomial pathogens. This process includes the identification of orthologous sequences, conserved motifs, domains, families, phylogenetic profiles, and protein-protein associations of these components. Based on the reference genome, genome-wide comparison revealed that the genomes of Enterobacter asburiae JCM6051, Enterobacter nimipressuralis CIP 104980, Enterobacter hormaechei ATCC49162, Enterobacter kobei JCM 8580, and Enterobacter ludwigii EN-119 encode 10 sigma factors that exist in the reference strain Enterobacter cloacae subsp cloacae ATCC13047. Moreover, the sequence similarity, protein domains and families of the sigma factors, protein-protein association, and phylogenetic profile indicate that the sigma factor proteins of these 5 strains may have evolutionary relatedness and functional characteristics important to their various environmental niches. Interestingly, the absence of RpoS in E kobei, which contributes to bacterial survival under environmental stress conditions, indicates that RpoS might have been independently acquired and may play different roles relating to pathogenicity, host range determination, and/or niche adaptation. Future work such as RNA sequencing will be directed towards investigating the roles that these sigma factors play in the biology of the Ecc.

8.
J Glob Antimicrob Resist ; 8: 104-105, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28082144

RESUMO

Enterobacter asburiae belongs to the Enterobacter cloacae complex (Ecc), which comprises six heterogenic species. These bacteria can cause nosocomial infections. Moreover, they are well known for antibiotic resistance features based on overproduction of AmpC ß-lactamases. Although Ecc have clinical importance, little is known about their virulence-associated properties, and very few strains from the six species have been sequenced. In this study, the type strain of E. asburiae 1497-78T (ATCC 35953) was sequenced. The genome sequence of the type strain of E. asburiae will help us to understand antibiotic resistance and evolution in Ecc.


Assuntos
Enterobacter/genética , Genoma Bacteriano , Análise de Sequência de DNA , Infecção Hospitalar/microbiologia , Enterobacter/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Humanos
9.
Microb Ecol ; 69(1): 75-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25081413

RESUMO

Outer membrane proteins (OMPs) are integral ß-barrel proteins of the Gram-negative bacterial cell wall and are crucial to bacterial survival within the macrophages and for eukaryotic cell invasion. Here, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to comprehensively assess the outer membrane proteome of Burkholderia cenocepacia, an opportunistic pathogen causing cystic fibrosis (CF), in conditions mimicking four major ecological niches: water, CF sputum, soil, and plant leaf. Bacterial cells were harvested at late log phase, and OMPs were extracted following the separation of soluble proteins by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE). Protein bands were excised and identified by LC-MS/MS analysis. The proteins identified under various growth conditions were further subjected to in silico analysis of gene ontology (subcellular localization, structural, and functional analyses). Overall, 72 proteins were identified as common to the four culture conditions, while 33, 37, 20, and 10 proteins were exclusively identified in the water, CF sputum, soil, and plant leaf environments, respectively. The functional profiles of the majority of these proteins revealed significant diversity in protein expression between the four environments studied and may indicate that the protein expression profiles are unique for every condition. Comparison of OMPs from one strain in four distinct ecological niches allowed the elucidation of proteins that are essential for survival in each niche, while the commonly expressed OMPs, such as RND efflux system protein, TonB-dependent siderophore receptor, and ABC transporter-like protein, represent promising targets for drug or vaccine development.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia cenocepacia/metabolismo , Proteoma/análise , Proteínas da Membrana Bacteriana Externa/genética , Burkholderia cenocepacia/genética , Eletroforese em Gel de Poliacrilamida , Sequências de Repetição em Tandem/genética
10.
Arch Microbiol ; 196(1): 9-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24213809

RESUMO

Chitosan, a versatile derivative of chitin, is widely used as an antimicrobial agent either alone or mixed with other natural polymers. Burkholderia cenocepacia is a multidrug-resistant bacteria and difficult to eradicate. Our previous studies shown that chitosan had strong antibacterial activity against B. cenocepacia. In the current study, we have investigated the molecular aspects for the susceptibility of B. cenocepacia in response to chitosan antibacterial activity. We have conducted RNA expression analysis of drug efflux system by RT-PCR, membrane protein profiling by SDS-PAGE, and by LC-MS/MS analysis following the validation of selected membrane proteins by real-time PCR analysis. By RT-PCR analysis, it was found that orf3, orf9, and orf13 were expressed at detectable levels, which were similar to control, while rest of the orf did not express. Moreover, shotgun proteomics analysis revealed 21 proteins in chitosan-treated cells and 16 proteins in control. Among them 4 proteins were detected as shared proteins under control and chitosan-treated cells and 17 proteins as uniquely identified proteins under chitosan-treated cells. Among the catalog of uniquely identified proteins, there were proteins involved in electron transport chain and ATP synthase, metabolism of carbohydrates and adaptation to atypical conditions proteins which indicate that utilization and pattern of chitosan is diverse which might be responsible for its antibacterial effects on bacteria. Moreover, our results showed that RND drug efflux system, which display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents, was not determined to play its role in response to chitosan. It might be lipopolysaccharides interaction with chitosan resulted in the destabilization of membrane protein to membrane lyses to cell death. Membrane proteome analysis were also validated by RT-qPCR analysis, which corroborated our results that of membrane proteins.


Assuntos
Anti-Infecciosos/farmacologia , Burkholderia cenocepacia/efeitos dos fármacos , Quitosana/farmacologia , Proteínas de Membrana/metabolismo , Farmacorresistência Bacteriana/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...