Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049320

RESUMO

Global-warming-induced climate changes and socioeconomic issues increasingly stimulate reviews of renewable energy. Among energy-generation devices, solar cells are often considered as renewable sources of energy. Lately, transparent conducting oxides (TCOs) are playing a significant role as back/front contact electrodes in silicon heterojunction solar cells (SHJ SCs). In particular, the optimized Sn-doped In2O3 (ITO) has served as a capable TCO material to improve the efficiency of SHJ SCs, due to excellent physicochemical properties such as high transmittance, electrical conductivity, mobility, bandgap, and a low refractive index. The doped-ITO thin films had promising characteristics and helped in promoting the efficiency of SHJ SCs. Further, SHJ technology, together with an interdigitated back contact structure, achieved an outstanding efficiency of 26.7%. The present article discusses the deposition of TCO films by various techniques, parameters affecting TCO properties, characteristics of doped and undoped TCO materials, and their influence on SHJ SC efficiency, based on a review of ongoing research and development activities.

2.
J Nanosci Nanotechnol ; 20(2): 1039-1045, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383103

RESUMO

We report the effects of the nitride passivation layer on the structural, electrical, and interfacial properties of Ge metal-oxide-semiconductor (MOS) devices with a hafnium oxide (HfO2) gate dielectric layer deposited on p-type 〈100〉 Ge substrates. X-ray photoelectron spectroscopy analysis confirmed the chemical states and formation of HfO2/Ge3N4 on Ge. The interfacial quality and thickness of the layers grown on Ge were confirmed by high-resolution transmission electron microscopy. In addition, the effects of post-deposition annealing (PDA) on the HfO2/Ge3N4/Ge and HfO2/Ge samples at 400 °C in an (FG+O2) ambient atmosphere for 30 min were studied. After PDA, the HfO2/Ge3N4/Ge MOS device showed a higher dielectric constant (k) of ~21.48 and accumulation capacitance of 1.2 nF, smaller equivalent oxide thickness (EOT) of 1.2 nm, and lower interface trap density (Dit) of 4.9×1011 cm-2 eV-1 and oxide charges (Qeff) of 7.8×1012 cm-2 than the non-annealed sample. The I-V analysis showed that the gate leakage current density of the HfO2/Ge3N4/Ge sample (0.3-1 nA cm-2 at Vg = 1 V) was half of that of the HfO2/Ge sample. Moreover, the barrier heights of the samples were extracted from the Fowler-Nordheim plots. These results indicated that nitride passivation is crucial to improving the structural, interfacial, and electrical properties of Ge-based MOS devices.

3.
Heliyon ; 4(10): e00835, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30465027

RESUMO

A hemisphere-array textured glass substrate was fabricated for the development of an improved thin-film (TF) silicon solar cell. The HF-H2SO4-etchant system influenced the light path owing to the formation of the strong fluorine-containing HSO3F acid. In particular, the etching system of the various HF concentration with a constant H2SO4 solution is related to make an improvement of optical transmittance and light trapping structure without a uniform pattern. According to the specular transmittance measurements, the haze ratio was maintained for the glass sample etched with 35% HF in the longer-wavelength region. The proposed substrate was implemented in a TF-Si solar cell, and an improved conversion efficiency was observed according to the short-circuit current density owing to the increase in the haze ratio. This morphology, therefore, induces more scattering at the front side of the cell and leads to an improvement of the open circuit voltage gain for the HF 25% cell. It will be helpful to understand the application of thin film solar cell based on the HF-H2SO4 etching system for the readers.

4.
J Nanosci Nanotechnol ; 15(3): 2247-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413647

RESUMO

Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

5.
J Nanosci Nanotechnol ; 14(12): 9237-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971043

RESUMO

Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

6.
J Nanosci Nanotechnol ; 13(12): 7860-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266153

RESUMO

The preparation of thin film silicon solar cells containing Ag nanoparticles is reported in this article. Ag nanoparticles were deposited on fluorine doped tin oxide coated glass substrates by the evaporation and condensation method. a-Si:H solar cells were deposited on these substrates by cluster type plasma enhanced chemical vapor deposition. We discuss the double textured surface effect with respect to both the surface morphology of the substrate and the plasmonic effect of the Ag nanoparticles. Ag nanoparticles of various sizes from 10 to 100 nm were deposited. The haze values of the Ag embedded samples increased with increasing particle size whereas the optical transmittance decreased at the same conditions. The solar cell with the 30 nm size Ag nanoparticles showed a short circuit current density of 12.97 mA/cm2, which is 0.53 mA/cm2 higher than that of the reference solar cell without Ag nanoparticles, and the highest quantum efficiency for wavelengths from 550 to 800 nm. When 30 nm size nanoparticles were employed, the conversion efficiency of the solar cell was increased from 6.195% to 6.696%. This study reports the application of the scattering effect of Ag nanoparticles for the improvement of the conversion efficiency of amorphous silicon solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...