Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 423, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661172

RESUMO

BACKGROUND: Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. METHODS: Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. RESULTS: MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. CONCLUSIONS: MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Monoéster Fosfórico Hidrolases/genética , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Dano ao DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/deficiência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/deficiência , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Br J Hosp Med (Lond) ; 78(12): 684-710, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29240509

RESUMO

Patients with mild bleeding disorders are under-recognized and frequently present to general physicians. The underlying reasons for bleeding are multifactorial. There is little evidence to guide diagnostic and management decision making in patients with mild bleeding disorders. This article outlines different types of mild bleeding disorders, with a particular focus on bleeding associated with low levels of von Willebrand factor and mild platelet defects. It gives practical, evidence-based advice on the investigation and management of patients with a suspected or known mild bleeding disorder, considering the scenarios of an acute bleed, stable outpatient, peri-surgical management and thrombosis. Patients with a mild bleeding disorder have variable bleeding because of the interplay of genetic and environmental factors. The clinical history remains of utmost importance in their general management. Liaison with a specialist centre, multidisciplinary assessment and a careful judgement of the balance of risk in each individual circumstance is required to safely manage these patients.


Assuntos
Transtornos da Coagulação Sanguínea/complicações , Tomada de Decisões , Gerenciamento Clínico , Hemorragia , Fator de von Willebrand/metabolismo , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/diagnóstico , Hemorragia/sangue , Hemorragia/diagnóstico , Hemorragia/etiologia , Humanos , Contagem de Plaquetas
3.
Free Radic Biol Med ; 51(3): 719-25, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21658444

RESUMO

Single-cell gel electrophoresis (comet assay) is one of the most common methods used to measure oxidatively damaged DNA in peripheral blood mononuclear cells (PBMC), as a biomarker of oxidative stress in vivo. However, storage, extraction, and assay workup of blood samples are associated with a risk of artifactual formation of damage. Previous reports using this approach to study DNA damage in PBMC have, for the most part, required the isolation of PBMC before immediate analysis or freezing in cryopreservative. This is very time-consuming and a significant drain on human resources. Here, we report the successful storage of whole blood in ~250 µl volumes, at -80°C, without cryopreservative, for up to 1 month without artifactual formation of DNA damage. Furthermore, this blood is amenable for direct use in both the alkaline and the enzyme-modified comet assay, without the need for prior isolation of PBMC. In contrast, storage of larger volumes (e.g., 5 ml) of whole blood leads to an increase in damage with longer term storage even at -80°C, unless a cryopreservative is present. Our "small volume" approach may be suitable for archived blood samples, facilitating analysis of biobanks when prior isolation of PBMC has not been performed.


Assuntos
Biomarcadores/análise , Criopreservação , Dano ao DNA/genética , DNA/metabolismo , Leucócitos Mononucleares/metabolismo , Coleta de Amostras Sanguíneas , Linhagem Celular , Ensaio Cometa/métodos , Ensaio Cometa/tendências , Dano ao DNA/imunologia , Humanos , Leucócitos Mononucleares/patologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...