Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10397, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369701

RESUMO

The utilization of nanotechnology and biotechnology for enhancing the synthesis of plant bioactive chemicals is becoming increasingly common. The hairy root culture technique can be used to increase secondary metabolites such as tropane alkaloids. Agrobacterium was used to induce hairy roots from various explants of Hyoscyamus muticus. The effect of nano-silver particles (AgNPs) at concentrations of 0, 25, 50, 100, and 200 mg/L on tropane alkaloids synthesis, particularly hyoscyamine and scopolamine, was studied in transgenic hairy root cultures. Different types of explants obtained from 10-day-old seedlings of H. muticus were inoculated with two strains of Agrobacterium rhizogenes (15,834 and A4). The antimicrobial activity of an ethanolic extract of AgNPs-induced hairy root cultures of H. muticus was tested. The frequency of hairy roots was higher in hypocotyl, root, leaf, and stem explants treated with A. rhizogenes strain A4 compared to those treated with strain 15,834. In transgenic hairy root cultures, AgNPs application at a concentration of 100 mg/L resulted in the highest total tropane alkaloid production, which exhibited broad-spectrum antimicrobial activity. The study demonstrated the potential of nano-silver as an elicitor for promoting the production of target alkaloids in Hyoscyamus muticus hairy root cultures, which exhibit high biological activity.


Assuntos
Alcaloides , Anti-Infecciosos , Hyoscyamus , Nanopartículas Metálicas , Prata/farmacologia , Prata/metabolismo , Tropanos/farmacologia , Tropanos/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Raízes de Plantas/metabolismo
2.
Plants (Basel) ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299200

RESUMO

Water deficit is a significant environmental stress that has a negative impact on plant growth and yield. In this research, the positive significance of kaolin and SiO2 nanoparticles in moderating the detrimental effects of water deficit on maize plant growth and yield is investigated. The foliar application of kaolin (3 and 6%) and SiO2 NPs (1.5 and 3 mM) solutions increased the growth and yield variables of maize plants grown under normal conditions (100% available water) and drought stress conditions (80 and 60% available water (AW)). In addition, plants treated with SiO2 NPs (3 mM) demonstrated increased levels of important osmolytes, such as proline and phenol, and maintained more of their photosynthetic pigments (net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E)) than with other applied treatments under either stress or non-stress conditions. Furthermore, the exogenous foliar application of kaolin and SiO2 NPs also reduced the amounts of hydroxyl radicals (OH), superoxide anions (O2), hydrogen peroxide (H2O2), and lipid peroxidation in maize plants experiencing a water deficit. In contrast, the treatments led to an increase in the activity of antioxidant enzymes such as peroxidase (POX), ascorbate peroxidase (APX), glutathione peroxidase (GR), catalase (CAT), and superoxide dismutase (SOD). Overall, our findings indicate the beneficial impact of the application of kaolin and silicon NPs, particularly the impact of SiO2 NPs (3 mM) on managing the negative, harmful impacts of soil water deficit stress in maize plants.

3.
Sci Rep ; 12(1): 11359, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790862

RESUMO

Agriculture, the main water-consuming factor, faces a global water scarcity crisis. Saline water is an alternative water source, while excess NaCl decreases plant growth and productivity of crops. L-cysteine (Cys) is a promising thiol amino acid in plant growth and development. Flax; Linum usitatissimum L. is an economical plant with low salt tolerance. NaCl salt stress at 50 and 100 mM inhibited the growth parameters, the photosynthetic pigments, total soluble sugars, total phenols, and amino nitrogen in flax plants. Salt stress led to a marked rise in proline and lipid peroxidation and altered the protein profile. Foliar application of cysteine at 0.8 and 1.6 mM mitigates the unfriendly effects of NaCl stress on flax plants. Cysteine enhanced the growth traits, photosynthetic pigments, amino nitrogen, total phenols, and new polypeptides in NaCl-stressed plants. However, cysteine declined the total sugars, proline, the activity of peroxidase, and ascorbate peroxidase. The results confirmed that cysteine had reductant properties. Furthermore, it decreased the NaCl oxidative stress and maintained the stability of membranes by lowering lipid peroxidation. Overall, the redox capacity of L-cysteine is the cause behind its potential counteracting of the adverse effects of NaCl toxicity on the growth of flax plants.


Assuntos
Linho , Antioxidantes , Cisteína , Fenóis , Prolina , Cloreto de Sódio , Açúcares
4.
Biotechnol Rep (Amst) ; 34: e00724, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686017

RESUMO

The study aimed to examine the influence of different doses (0, 5, 10, and 20 Gray) of gamma radiation on growth, yield traits, and biochemical constituents of barley plants. The low doses (5 and 10 Gy) significantly improved the growth and yield of barley crop. Surprisingly, a higher dose (20 Gy) increased shoot growth and tillers number. Photosynthetic pigments were increased markedly at low doses (5 Gy) whereas decreased at high one. Gamma radiation enhanced total phenols, total flavonoids, total amino acids, antioxidant enzymes and H2O2. In addition, the protein profile showed varies in response depending on the applied dose. Conversely, gamma rays resulted in lower total sugars and proline than the corresponding control values. Ultimately, the modified antioxidant potential, protein pattern, and metabolic changes of barley exhibited the effectiveness of low doses of gamma irradiation in improving growth, and yield of barley plants.

5.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740045

RESUMO

Ionizing radiation is abiotic stress limiting the growth and productivity of crop plants. Stigmasterol has positive effects on the plant growth of many crops. The role of stigmasterol in alleviating the effects of ionizing radiation on plant metabolism and development is still unclear. Therefore, the study aimed to investigate the effects of pretreatments with γ-radiation (0, 25, and 50 Gy), foliar application of stigmasterol (0, 100, and 200 ppm), and their interaction on the growth, and biochemical constituents of wheat (Triticum aestivum L., var. Sids 12) plants. Gamma radiation at 25 Gy showed no significant difference in plant height, root length, no. of leaves, shoot fresh weight, root fresh weight, Chl a, ABA, soluble phenols, and MDA compared to the control values. Gamma rays at 50 Gy inhibited shoot and root lengths, flag leaf area, shoot fresh and dry weights, photosynthetic pigments, total soluble sugars, proline, and peroxidase activity. However, it stimulated total phenols, catalase activity, and lipid peroxidation. On the other hand, stigmasterol at 100 ppm showed no significant effects on some of the physiological attributes compared to control plants. Stigmasterol at 200 ppm improved plant growth parameters, photosynthetic pigments, proline, phenols, antioxidant enzyme, gibberellic acid, and indole acetic acid. Correspondingly, it inhibited total soluble sugars, abscisic acid, and lipid peroxidation. Moreover, the application of stigmasterol caused the appearance of new polypeptides and the reappearance of those missed by gamma radiation. Overall, stigmasterol could alleviate the adverse effects of gamma radiation on wheat plants.

6.
Plants (Basel) ; 11(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567220

RESUMO

Drought is the main limiting abiotic environmental stress worldwide. Water scarcity restricts the growth, development, and productivity of crops. Wheat (Triticum aestivum L.) is a fundamentally cultivated cereal crop. This study aimed to evaluate the effect of grain-priming with arginine (0.25, 0.5, and 1 mM) on growth performance and some physiological aspects of wheat plants under normal or drought-stressed conditions. Morphological growth parameters, photosynthetic pigments, soluble sugars, free amino acids, proline, total phenols, flavonoids, and proteins profiles were determined. Drought stress lowered plant growth parameters and chlorophyll a and b contents while increasing carotenoids, soluble sugars, free amino acids, proline, total phenols, and flavonoids. Soaking wheat grains with arginine (0.25, 0.5, and 1 mM) improves plant growth and mitigates the harmful effects of drought stress. The most effective treatment to alleviate the effects of drought stress on wheat plants was (1 mM) arginine, that increased root length (48.3%), leaves number (136%), shoot fresh weight (110.5%), root fresh weight (110.8%), root dry weight (107.7%), chlorophyll a (11.4%), chlorophyll b (38.7%), and carotenoids content (41.9%) compared to the corresponding control values. Arginine enhanced the synthesis of soluble sugars, proline, free amino acids, phenols, and flavonoids in wheat plants under normal or stressed conditions. Furthermore, the protein profile varies in response to drought stress and arginine pretreatments. Ultimately, pretreatment with arginine had a powerful potential to face the impacts of drought stress on wheat plants by promoting physiological and metabolic aspects.

7.
AMB Express ; 12(1): 13, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132491

RESUMO

Paper sheets represent one of the infection risk sources inside educational and administrative institutions under biological pandemics. So, the present study aimed to validate the efficiency of gamma radiation or dry heat techniques to sterilize contaminated paper sheets with different indicator pathogens while retaining their structure. The results showed that gamma radiation at 6, 12, or 24 kGy can successfully kill Gram-positive bacteria such as Bacillus cereus and Staphylococcus aureus, Gram-negative bacteria such as Escherichia coli and Salmonella typhi, and fungi such as Candida albicans. Moreover, dry heating at 100 °C for 60 min, 150 °C for 30 min, or 200 °C for 15 min can be successful in paper decontamination of all tested species. Surprisingly, scanning electron microscopy (SEM) micrographs proved that gamma radiation at 6 kGy, dry heat at 100 °C for 60 min or 150 °C for 30 min or 200 °C for 15 min, is suitable for paper sheet sterilization while maintaining their structure. Ultimately, dry heat is a simple, effective, fast, safe, and inexpensive technique for paper sterilization. It may be used as a precautionary step inside educational institutions, especially during written examination periods, to ensure a safe life for academic members during biological pandemics such as COVID-19.

8.
Heliyon ; 5(10): e02631, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667428

RESUMO

The objective of this research was to determine the foliar application of L-ornithine (0.0, 0.30 and 0.60 mM) as a precursor of polyamines, at vegetative stage was on antioxidant defense and growth of drought stressed sugar beet plants grown under clay and sandy soil conditions. Two water irrigation treatments (80% and 40% Field capacity) were carried out on sugar beet plants grown in pots under greenhouse conditions. Water stress resulted in significantly decrement in growth parameters including root diameter, root and shoot weights per plant compared with corresponding control plants. The results showed that drought stress significantly affected most biochemical characteristics of plants. Photosynthetic pigments contents, free amino acids and peroxidase enzyme activity were decreased, while catalase enzyme activity and lipid peroxidation was increased with drought stress. On the other hand, foliar application of L-ornithine effectively alleviated harmful effects caused by drought stress on root length, root and shoot weights of sugar beet plants, especially under sandy soil conditions. The results cleared that ameliorating the negative effects of drought stress through exogenously applied L-ornithine associated with improved photosynthetic pigments, protein profile, lipid peroxidation, antioxidant enzymes; catalase and peroxidase, total soluble sugars and total amino led to increasing drought tolerance of sugar beet plants.

9.
Biotechnol Rep (Amst) ; 24: e00377, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31641621

RESUMO

Knowledge about the risks of the nanoparticles application on the plant development and human health is still limited. Different concentrations of nano-selenium (0, 20 and 40 ppm) were applied to three different Egyptian groundnut (Arachis hypogaea l.) cultivars; (NC, Gregory and Giza 6) under sandy soil conditions at vegetative growth stage to investigate their effects on yield components, protein profile, fatty acids composition, total antioxidant content and cytotoxicity of yielded seeds. The results indicate that the tested Nano-Selenium (Nano-Se) concentrations improved yield components and seeds oil. However, Nano-Se altered protein signatures as well as fatty acids composition by increasing unsaturated fatty acids and/or decreasing saturated fatty acids as compared with control, the cytotoxicity assessments proved safety of the yield for human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...